Handles creating, reading and updating training events.

GET /api/training/?format=api&offset=360&ordering=-audienceRoles
HTTP 200 OK
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "count": 378,
    "next": null,
    "previous": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=340&ordering=-audienceRoles",
    "results": [
        {
            "id": 363,
            "name": "Introduction au text-mining avec AlvisNLP",
            "shortName": "Introduction to text-mining with AlvisNLP",
            "description": "Objectifs pédagogiques\r\nCette formation est dédiée à l’analyse de données textuelles (text-mining). L’objectif est l’acquisition des principales techniques pour la Reconnaissance d’Entités Nommées (REN) à partir de textes. Les entités nommées étudiées dans cette formation sont des objets ou concepts d’intérêts mentionnés dans les articles scientifiques ou les champs en texte libre (taxons, gènes, protéines, marques, etc.).\r\n\r\nLes participants vont acquérir les compétences pratiques nécessaires pour effectuer de façon autonome une première approche pour une application de text-mining. Le format est celui de Travaux Pratiques utilisant AlvisNLP, un outil pour la création de pipelines en text-mining développé par l’équipe Bibliome de l’unité MaIAGE. La formation s’adresse à des chercheurs et ingénieurs en (bio)-informatique ou en maths-info-stats appliquées\r\n\r\nProgramme\r\n* Présentation du text-mining et de la Reconnaissance des Entités Nommées (REN)\r\n* Travaux Pratiques sur des techniques de REN en utilisant AlvisNLP\r\n* Projection de lexiques\r\n* Application de patrons\r\n* Apprentissage automatique",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605",
                "http://edamontology.org/topic_3474"
            ],
            "keywords": [
                "Text mining"
            ],
            "prerequisites": [
                "Linux - Basic Knowledge"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T14:56:19.822106Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Life scientists",
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "Cette formation est dédiée à l’analyse de données textuelles (text-mining). L’objectif est l’acquisition des principales techniques pour la Reconnaissance d’Entités Nommées (REN) à partir de textes. Les entités nommées étudiées dans cette formation sont des objets ou concepts d’intérêts mentionnés dans les articles scientifiques ou les champs en texte libre (taxons, gènes, protéines, marques, etc.).\r\n\r\nLes participants vont acquérir les compétences pratiques nécessaires pour effectuer de façon autonome une première approche pour une application de text-mining. Le format est celui de Travaux Pratiques utilisant AlvisNLP, un outil pour la création de pipelines en text-mining développé par l’équipe Bibliome de l’unité MaIAGE. La formation s’adresse à des chercheurs et ingénieurs en (bio)-informatique ou en maths-info-stats appliquées",
            "hoursPresentations": 5,
            "hoursHandsOn": 7,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/588/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/680/?format=api"
            ]
        },
        {
            "id": 360,
            "name": "Modélisation in silico de structures 3D de protéines. Prédiction de mutations, de fixation de ligands",
            "shortName": "Modélisation de structures 3D de protéines",
            "description": "Objectifs pédagogiques\r\nA l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du logiciel PyMOL. Ils seront capables de les appliquer pour visualiser leur système biologique d’intérêt, et d’effectuer des commandes basiques d’identification de poches catalytiques, de profilage de surface électrostatique, et de mutations d’acides aminés.\r\n\r\nAussi, ils connaîtront les bases et les outils de bioinformatique structurale et seront autonomes pour effectuer des modèles de protéines par prédiction (Alphafold2), calculer les meilleures poses de fixation de leur(s) ligand(s) (Autodock4) et reconstruire l’éventuel assemblage biologique.\r\n\r\nBonus : Ils s’approprieront ces outils avec une demi-journée dédiée à la modélisation de leur système d’étude : protéines, interactions protéines/ADN, arrimage de ligand, etc.\r\n\r\nProgramme\r\nVisualiser :\r\n* Maîtriser les bases de la visualisation des protéines en 3D avec PyMOL.\r\nComprendre :\r\n* Analyser des structures 3D de protéines (RX ou RMN).\r\n* Identifier des homologues avec HHpred.\r\n* Modéliser par prédiction sa protéine d’intérêt avec Alphafold2.\r\nPrédire :\r\n* Savoir calculer des meilleures poses de ligands avec Autodock.\r\n* Prédir et modéliser les mutations in silico.\r\n\r\n- Points forts et limites des différents outils\r\n- ️“hand- on tutorials”\r\n- Plus une session dédiée : «bring your own protein»",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_1317"
            ],
            "keywords": [
                "Protein structures",
                "2D/3D",
                "Protein/protein interaction modelisation"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T14:36:41.185563Z",
            "audienceTypes": [
                "Professional (initial)"
            ],
            "audienceRoles": [
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "A l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du logiciel PyMOL. Ils seront capables de les appliquer pour visualiser leur système biologique d’intérêt, et d’effectuer des commandes basiques d’identification de poches catalytiques, de profilage de surface électrostatique, et de mutations d’acides aminés.\r\n\r\nAussi, ils connaîtront les bases et les outils de bioinformatique structurale et seront autonomes pour effectuer des modèles de protéines par prédiction (Alphafold2), calculer les meilleures poses de fixation de leur(s) ligand(s) (Autodock4) et reconstruire l’éventuel assemblage biologique.\r\n\r\nBonus : Ils s’approprieront ces outils avec une demi-journée dédiée à la modélisation de leur système d’étude : protéines, interactions protéines/ADN, arrimage de ligand, etc.",
            "hoursPresentations": 4,
            "hoursHandsOn": 8,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/585/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/699/?format=api"
            ]
        },
        {
            "id": 370,
            "name": "Introduction à l'analyse de données de métabarcoding 16S avec Galaxy",
            "shortName": "",
            "description": "L’objectif de cette formation est de se familiariser avec les étapes et les outils pour analyses de données de métabarcoding 16S. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction au métabarcoding 16S, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- évaluer la qualité de données de métabarcoding ,\r\n- analyser et visualiser une communauté microbienne à partir de données de métabarcoding 16S",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_3697",
                "http://edamontology.org/topic_0637"
            ],
            "keywords": [
                "Galaxy",
                "Metabarcoding"
            ],
            "prerequisites": [],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                },
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:18:18.945136Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 131,
                    "name": "16S Microbial Analysis with mothur",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/16S%20Microbial%20Analysis%20with%20mothur/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Analyze of 16S rRNA sequencing data using the mothur toolsuite in Galaxy\r\n- Using a mock community to assess the error rate of your sequencing experiment\r\n- Visualize sample diversity using Krona and Phinch",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/595/?format=api"
            ]
        },
        {
            "id": 377,
            "name": "RNASEQ ALIGNMENT, QUANTIFICATION AND TRANSCRIPT DISCOVERY WITH STATISTICS",
            "shortName": "RNASeq bioinfo / biostat",
            "description": "The Toulouse Genotoul bioinformatics platform, in collaboration with the Genotoul Biostatistics platform, and the MIAT unit, organize a 3,5 days long training course for bio-informaticians and biologists aiming at learning sequence analysis. It focuses on (protein coding) gene expression analysis using reads produced by ‘RNA-Seq’. This training session is designed to introduce sequences from ‘NGS’ (Next Generation Sequencing), particularly Illumina platforms (HiSeq). You will discover the standards file formats, learn about the usual biases of this type of data and run different kinds of analyses, such as spliced alignment on a reference genome, novel gene and transcript discovery, expression quantification of coding genes and transcripts. Finally you will be able to extract the differentially expressed genes.",
            "homepage": "https://bioinfo.genotoul.fr/index.php/events/rnaseq-alignment-transcripts-assemblies-statistics/",
            "is_draft": false,
            "costs": [
                "Non-academic: 550€ + 20% taxes (TVA)",
                "Academic but non-INRAE: 170 € + 20% taxes (TVA)",
                "For INRAE's staff: 150 € no VAT charged;"
            ],
            "topics": [
                "http://edamontology.org/topic_3308",
                "http://edamontology.org/topic_0203"
            ],
            "keywords": [
                "NGS Data Analysis",
                "Expression"
            ],
            "prerequisites": [
                "Langage R de base",
                "Linux/Unix",
                "Cluster"
            ],
            "openTo": "Everyone",
            "accessConditions": "Register on the training page : https://bioinfo.genotoul.fr/index.php/training-2/training/",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/642/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/739/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/300/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 15,
                    "name": "MIAT",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 33,
                    "name": "Genotoul-biostat",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-biostat/?format=api"
                },
                {
                    "id": 22,
                    "name": "Genotoul-bioinfo",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api"
                }
            ],
            "logo_url": "http://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png",
            "updated_at": "2025-12-01T11:55:30.468881Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Life scientists",
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [
                {
                    "id": 135,
                    "name": "training RNASEQ Bioinfo part",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/training%20RNASEQ%20Bioinfo%20part/?format=api"
                },
                {
                    "id": 136,
                    "name": "training RNASeq biostat part",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/training%20RNASeq%20biostat%20part/?format=api"
                }
            ],
            "learningOutcomes": "",
            "hoursPresentations": null,
            "hoursHandsOn": null,
            "hoursTotal": 21,
            "personalised": false,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/612/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/721/?format=api"
            ]
        },
        {
            "id": 290,
            "name": "NGS data analysis on the command line",
            "shortName": "NGS-analysis-cli",
            "description": "This hands-on course will teach bioinformatic approaches for analyzing Illumina sequencing data. Our goal is to introduce the command line skills you need to make the most of your NGS data. \r\nDuring this 4-day training we will first introduce the Linux environment, shell commands and basic R scripting.  And then we will focus on two NGS data analyses -- small RNA-seq and RNA-seq -- based on published datasets from the model organism Arabidopsis thaliana",
            "homepage": "https://www.ibmp.cnrs.fr/bioinformatics-trainings/",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_0102",
                "http://edamontology.org/topic_3170",
                "http://edamontology.org/topic_2269",
                "http://edamontology.org/topic_3168"
            ],
            "keywords": [],
            "prerequisites": [
                "none"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "This training is dedicated to academics working in a laboratory of Unistra/CNRS.",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/124/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 79,
                    "name": "IBMP",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IBMP/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 14,
                    "name": "BiGEst",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/BiGEst/?format=api"
                }
            ],
            "logo_url": null,
            "updated_at": "2024-01-22T14:51:37.215331Z",
            "audienceTypes": [],
            "audienceRoles": [
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "Applied Knowledge (Know-how):\r\n- Basic proficiency at the Linux command line prompt\r\n- Basic proficiency of R (environment, objects, graphs) \r\n- Next generation sequencing (NGS) file formats; reference genomes - Mapping NGS read data to reference genomes (bowtie, samtools)\r\n- Small RNA-seq analysis; epigenomics applications (ShortStack)\r\n- RNA-seq for transcriptomics; differential gene expression analysis (HISAT2, DESeq2) - Data wrangling and visualization in R (Rstudio, ggplot2)",
            "hoursPresentations": 12,
            "hoursHandsOn": 16,
            "hoursTotal": 28,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/503/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/504/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/589/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/454/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/660/?format=api"
            ]
        },
        {
            "id": 388,
            "name": "Analysis of shotgun metagenomic data",
            "shortName": "",
            "description": "This training session is organized by the Genotoul bioinfo platform. This course is dedicated to the analysis of prokaryotic shotgun metagenomic data from Illumina and Pacbio HiFi sequencing technology. \r\n\r\nAfter an overview of metagenomics and the biases and limitations of analyses, we will look at the main steps involved in analysing metagenomic data and launch independent tools on the genobioinfo cluster.\r\nLearners will then test a workflow to automate processing on a test dataset (metagWGS ).\r\nOn the third day, learners will choose which analysis strategy to start with according to their experimental design and launch the first stage of metagWGS on their own data.\r\nBy the end of the course, trainees will be familiar with the scope, advantages and limitations of shotgun sequencing data analysis and will have started the analysis on their own data.\r\n\r\ncalendar\r\n \r\n\r\nThis training is focused on practice. It consists of several modules with a large variety of exercises:\r\n\r\nFirst Day\r\nStart at 09:00 am\r\nTour de table\r\nIntroduction to metagenomics, Illumina and Pacbio data, analysis stages, analysis limits, etc.\r\nPresentation of some key tools for each stage\r\nPractical work on the main stages launched independently\r\nEnd at 17:00 pm\r\nSecond Day\r\nStart at 09:00 am\r\nIntroduction to the advantages and disadvantages of workflows and containers\r\nLaunch of the data cleansing stage\r\nLaunch of the rest of the workflow and analysis of the multiQC report\r\nEnd at 17:00 pm\r\nThird Day – BYOD\r\nStart at 09:00 am\r\nDefine the analysis strategy and launch the start of the analysis of your own data.\r\nEnd at 17:00 pm maximum",
            "homepage": "https://bioinfo.genotoul.fr/index.php/events/analysis-of-shotgun-metagenomic-data/",
            "is_draft": false,
            "costs": [
                "Non-academic for non-academic: 1650€ + 20% taxes (TVA)",
                "Academic non-INRAE for academic but non-INRAE: 510 € + 20% taxes (TVA)",
                "INRAE for INRAE's staff: 450 € no VAT charged"
            ],
            "topics": [
                "http://edamontology.org/topic_3174"
            ],
            "keywords": [
                "NGS Data Analysis",
                "Metagenomics"
            ],
            "prerequisites": [
                "Linux/Unix",
                "Cluster"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/300/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                },
                {
                    "id": 37,
                    "name": "MIAT - Mathématiques et Informatique Appliquées de Toulouse",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT%20-%20Math%C3%A9matiques%20et%20Informatique%20Appliqu%C3%A9es%20de%20Toulouse/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 22,
                    "name": "Genotoul-bioinfo",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api"
                }
            ],
            "logo_url": "http://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png",
            "updated_at": "2025-12-01T11:55:10.179665Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Life scientists",
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [
                {
                    "id": 151,
                    "name": "Metagenomic training",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Metagenomic%20training/?format=api"
                }
            ],
            "learningOutcomes": "",
            "hoursPresentations": 3,
            "hoursHandsOn": 15,
            "hoursTotal": 18,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/670/?format=api"
            ]
        },
        {
            "id": 315,
            "name": "Using sed and awk to modify large large text files",
            "shortName": "",
            "description": "Many analysis generate large result text files which have to be checked, merged, split, reduced. Several tools have been developed and are available on Unix to do this, including sed and AWK. During this course you will be trained to process large files with sed and AWK. Sed is tool enabling to select and process lines. You can easily insert, delete, modify, append lines to very large files with millions of lines. AWK will enable to perform more fine tuned file modifications based on columns. It includes also more mathematical and string functions.  The course is based mainly on exercises with small sections presenting concepts and commands.",
            "homepage": "http://bioinfo.genotoul.fr/index.php/events/modify-and-extract-information-from-large-text-files-day-2-3/",
            "is_draft": false,
            "costs": [
                "Non-academic: 550€ + 20% taxes (TVA)",
                "Academic but non-INRAE: 170 € + 20% taxes (TVA)",
                "For INRAE's staff: 150 € no VAT charged;"
            ],
            "topics": [
                "http://edamontology.org/topic_3316"
            ],
            "keywords": [],
            "prerequisites": [
                "Linux/Unix"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/338/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 37,
                    "name": "MIAT - Mathématiques et Informatique Appliquées de Toulouse",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT%20-%20Math%C3%A9matiques%20et%20Informatique%20Appliqu%C3%A9es%20de%20Toulouse/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 22,
                    "name": "Genotoul-bioinfo",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api"
                }
            ],
            "logo_url": "http://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png",
            "updated_at": "2025-12-01T11:57:16.182121Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": null,
            "hoursHandsOn": null,
            "hoursTotal": null,
            "personalised": false,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/478/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/479/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/611/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/631/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/669/?format=api"
            ]
        },
        {
            "id": 361,
            "name": "Initiation à Linux / Introduction to Linux",
            "shortName": "Initiation à Linux",
            "description": "Objectifs pédagogiques\r\nÀ l'issue de la formation, les stagiaires connaîtront les principales commandes Linux et sauront utiliser le système Linux.\r\n\r\nProgramme\r\n* Connexion (ssh) et transferts de fichiers (scp, rsync)\r\n* Interfaces graphiques (Gnome, KDE) / émulateurs\r\n* Aide en ligne\r\n* Utilisation du shell : le rappel des commandes, l’historique, la complétion\r\n* Système de fichiers : arborescence et chemin d’accès, le répertoire d’accueil…\r\n* Gestion des fichiers et des répertoires\r\n* Principe de protection : les attributs sur les fichiers, les droits d’accès",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [
                "Linux"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T14:43:04.391836Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "À l'issue de la formation, les stagiaires connaîtront les principales commandes Linux et sauront utiliser le système Linux.",
            "hoursPresentations": 1,
            "hoursHandsOn": 5,
            "hoursTotal": 6,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/586/?format=api"
            ]
        },
        {
            "id": 382,
            "name": "Introduction à l'analyse de données transcriptomiques avec Galaxy",
            "shortName": "",
            "description": "L’objectif est de se familiariser avec les étapes d’analyses des données transcriptomiques ou RNA-seq avec référence pour extraire les gènes et fonctions différentiellement exprimés. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\n\r\nAprès une introduction à la transcriptomique, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- évaluer la qualité des données transcriptomiques,\r\n- aligner des données transcriptomiques sur un génome de référence,\r\n- estimer le nombre de séquences par gènes,\r\n- construire et faire une analyse d’expression différentielle des gènes\r\n- faire une analyse de l’enrichissement fonctionnel des gènes différentiellement exprimés",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_3308",
                "http://edamontology.org/topic_1775",
                "http://edamontology.org/topic_0203",
                "http://edamontology.org/topic_3170"
            ],
            "keywords": [
                "Galaxy",
                "RNA-seq",
                "Transcriptomics (RNA-seq)"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/807/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                },
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-06-06T08:06:54.982689Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 144,
                    "name": "Reference-based RNA-Seq data analysis with Galaxy",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Reference-based%20RNA-Seq%20data%20analysis%20with%20Galaxy/?format=api"
                },
                {
                    "id": 145,
                    "name": "Introduction to Transcriptomics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Introduction%20to%20Transcriptomics/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Check a sequence quality report generated by FastQC for RNA-Seq data\r\n- Explain the principle and specificity of mapping of RNA-Seq data to an eukaryotic reference genome\r\n- Select and run a state of the art mapping tool for RNA-Seq data\r\n- Evaluate the quality of mapping results\r\n- Describe the process to estimate the library strandness\r\n- Estimate the number of reads per genes\r\n- Explain the count normalization to perform before sample comparison\r\n- Construct and run a differential gene expression analysis\r\n- Analyze the DESeq2 output to identify, annotate and visualize differentially expressed genes\r\n- Perform a gene ontology enrichment analysis\r\n- Perform and visualize an enrichment analysis for KEGG pathways",
            "hoursPresentations": 1,
            "hoursHandsOn": 7,
            "hoursTotal": 8,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/637/?format=api"
            ]
        },
        {
            "id": 287,
            "name": "Introduction to Oxford Nanopore Technology data analyses",
            "shortName": "Introduction to ONT data analyses",
            "description": "This course offers an introduction to ONT data analysis. It includes 5 issues: basecalling, reads quality control, assemblies and polishing/correction, contig quality and structural variants detection.",
            "homepage": "https://southgreenplatform.github.io/trainings//ont/",
            "is_draft": false,
            "costs": [
                "Free"
            ],
            "topics": [
                "http://edamontology.org/topic_3673",
                "http://edamontology.org/topic_0196",
                "http://edamontology.org/topic_3168"
            ],
            "keywords": [],
            "prerequisites": [
                "Linux and knowledge of NGS formats"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 15,
            "contacts": [],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [],
            "organisedByTeams": [
                {
                    "id": 24,
                    "name": "South Green",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api"
                }
            ],
            "logo_url": "https://southgreenplatform.github.io/trainings//images/southgreenlong.png",
            "updated_at": "2023-01-24T10:21:58.467251Z",
            "audienceTypes": [
                "Professional (initial)"
            ],
            "audienceRoles": [
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 1,
                    "name": "SG-ONT-slides",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/SG-ONT-slides/?format=api"
                }
            ],
            "learningOutcomes": "* Understanding limits and advantages of ONT technology\r\n* Manipulating ONT data on a virtual machine on jupyter environment\r\n* Handling mapping, assembly, polishing tools and be able to analyse your own data\r\n* Detecting structural variations using long reads",
            "hoursPresentations": 6,
            "hoursHandsOn": 6,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/441/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/450/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/562/?format=api"
            ]
        },
        {
            "id": 371,
            "name": "Introduction à l'analyse de données métatranscriptomiques avec Galaxy",
            "shortName": "",
            "description": "L’objectif de cette formation est de se familiariser avec les étapes et les outils d’analyse de données métatranscriptomiques dans le but de comprendre les fonctions d’une communauté microbienne. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de ces étapes  en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à la métatranscriptomique, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- assigner des taxons à des données de métatranscriptomiques,\r\n- extraire des informations fonctionnelles au sein de données de métatranscriptomiques,\r\n- combiner informations taxonomiques et fonctionnelles pour faciliter la compréhension des fonctions d’une communauté microbienne",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_3697",
                "http://edamontology.org/topic_0085",
                "http://edamontology.org/topic_3941",
                "http://edamontology.org/topic_1775"
            ],
            "keywords": [
                "Galaxy"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                },
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:22:23.706233Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 132,
                    "name": "Metatranscriptomics analysis using microbiome RNA-seq data",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Metatranscriptomics%20analysis%20using%20microbiome%20RNA-seq%20data/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Choose the best approach to analyze metatranscriptomics data\r\n- Understand the functional microbiome characterization using metatranscriptomic results\r\n- Understand where metatranscriptomics fits in ‘multi-omic’ analysis of microbiomes\r\n- Visualise a community structure",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": []
        },
        {
            "id": 384,
            "name": "EBAII - Ecole de Bioinformatique niveau intermédiaire",
            "shortName": "EBAII N2",
            "description": "Objectifs: L’école s’articulera autour de trois ateliers thématiques en session parallèle (RNA-seq, ChIP-seq, variants DNA-seq), et abordera la visualisation et l’intégration des données. \r\n\r\nEnvironnement de travail: L’ensemble de la formation reposera sur l’utilisation de commandes en ligne (terminal Linux) et du langage R. \r\n\r\nPrérequis: Les candidats doivent avoir acquis les compétences enseignées durant l’école de niveau débutant: un niveau de base en ligne de commande, R, et (au choix) RNA-seq, ChIP-seq ou variants DNA-seq.",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_3391",
                "http://edamontology.org/topic_3366",
                "http://edamontology.org/topic_0092",
                "http://edamontology.org/topic_3168",
                "http://edamontology.org/topic_0091"
            ],
            "keywords": [
                "Biostatistics",
                "Sequence analysis",
                "NGS Sequencing Data Analysis"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "La formation s’adresse à des biologistes directement impliqués dans des projets “Next Generation Sequencing” (NGS)  avec un niveau de base en ligne de commande, R, et (au choix) RNA-seq, ChIP-seq ou variants DNA-seq.",
            "maxParticipants": null,
            "contacts": [],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [],
            "organisedByTeams": [],
            "logo_url": "https://www.sb-roscoff.fr/sites/www.sb-roscoff.fr/files/styles/large/public/images/station-biologique-roscoff-roscoff-4404.jpg",
            "updated_at": "2024-12-05T07:33:48.573507Z",
            "audienceTypes": [],
            "audienceRoles": [
                "Biologists"
            ],
            "difficultyLevel": "",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": null,
            "hoursHandsOn": null,
            "hoursTotal": null,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/644/?format=api"
            ]
        },
        {
            "id": 366,
            "name": "Initiation à l’utilisation de la plateforme de bio-analyse Galaxy",
            "shortName": "",
            "description": "L’objectif est de se familiariser avec l’interface utilisateur de Galaxy. \r\n\r\nAprès une introduction à Galaxy, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- Importer des données\r\n- Identifier des outils\r\n- Faire une analyse\r\n- Gérer un historique\r\n- Créer un workflow",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_0091"
            ],
            "keywords": [
                "Galaxy"
            ],
            "prerequisites": [],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                },
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T10:47:23.782242Z",
            "audienceTypes": [
                "Graduate",
                "Professional (initial)",
                "Professional (continued)",
                "Undergraduate"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 126,
                    "name": "Galaxy 101 for everyone",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Galaxy%20101%20for%20everyone/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Assess short reads FASTQ quality using FASTQE 🧬😎 and FastQC\r\n- Assess long reads FASTQ quality using Nanoplot and PycoQC\r\n- Perform quality correction with Cutadapt (short reads)\r\n-  Summarise quality metrics MultiQC\r\n- Process single-end and paired-end data\r\n- Define what mapping is\r\n- Perform mapping of reads on a reference genome\r\n- Evaluate the mapping output",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/592/?format=api"
            ]
        },
        {
            "id": 367,
            "name": "Introduction à l'analyse de données de séquençage avec contrôle qualité et alignement sur un génome de référence avec Galaxy",
            "shortName": "",
            "description": "L’objectif de cette formation est de se familiariser avec les premières étapes communes à toutes les analyses de données de séquençage : le contrôle qualité des données et l’alignement sur un génome de référence. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main des ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction aux données de séquençage, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- évaluer la qualité de données de séquençage,\r\n- améliorer la qualité de données de séquençage\r\n- aligner des données sur un génome de référence",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_0091",
                "http://edamontology.org/topic_0102"
            ],
            "keywords": [
                "Quality Control",
                "Galaxy",
                "Mapping"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                },
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:22:59.733596Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 128,
                    "name": "Mapping with Galaxy",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Mapping%20with%20Galaxy/?format=api"
                },
                {
                    "id": 127,
                    "name": "Quality Control with Galaxy",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Quality%20Control%20with%20Galaxy/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Assess short reads FASTQ quality using FASTQE 🧬😎 and FastQC\r\n- Assess long reads FASTQ quality using Nanoplot and PycoQC\r\n- Perform quality correction with Cutadapt (short reads)\r\n-  Summarise quality metrics MultiQC\r\n- Process single-end and paired-end data\r\n- Define what mapping is\r\n- Perform mapping of reads on a reference genome\r\n- Evaluate the mapping output",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/593/?format=api"
            ]
        },
        {
            "id": 275,
            "name": "Single-Cell : Transcriptomics, Spatial and Long reads",
            "shortName": "SincellTE",
            "description": "This workshop focuses on the large-scale study of heterogeneity across individual cells from a genomic, transcriptomic and epigenomic point of view. New technological developments enable the characterization of molecular information at a single cell resolution for large numbers of cells. The high dimensional omics data that these technologies produce raise novel methodological challenges for the analysis. In this regard, dedicated bioinformatics and statistical methods have been developed in order to extract robust information.\r\n\r\nThe workshop aims to provide such methods for engineers and researchers directly involved in functional genomics projects making use of single-cell technologies. A wide range of single cell topics will be covered in lectures, demonstrations and practical classes. Among others, the areas and issues to be addressed will include the choice of the most appropriate single-cell sequencing technology, the experimental design and the bioinformatics and statistical methods and pipelines. For this edition, new courses/practicals will focus on spatial transcriptomics, cell phenotyping and additional multi-omics.\r\n\r\nA wide range of single cell topics will be covered in lectures, demonstrations and practical classes. Among others, the areas and issues to be addressed will include the choice of the most appropriate single-cell sequencing technology, the experimental design and the bioinformatics and statistical methods and pipelines. For this edition, new courses/practicals will focus on spatial transcriptomics, cell phenotyping and additional multi-omics.\r\n\r\nRequirements : Participants must have prior experience on NGS data analysis  with everyday use of R and good knowledge of Unix command line. Before the training, participants will be asked to familiarize themselves with the processing and primary analyses steps of scRNA-seq datasets with provided pedagogic material.\r\n\r\nIt is not necessary to have personal single-cell data to analyse.",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [],
            "keywords": [],
            "prerequisites": [
                "Master",
                "Autre (Diplôme universitaire, école d'ingénieur ...)"
            ],
            "openTo": "Everyone",
            "accessConditions": "Participants must have prior experience on NGS data analysis with everyday use of R and/or Python and good knowledge of Unix command line. Before the training, participants are advised to familiarize themselves with the processing and primary analyses steps of scRNA-seq datasets. \r\nIt is not necessary to have personal single-cell data to analyse.",
            "maxParticipants": 30,
            "contacts": [],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 4,
                    "name": "IFB - ELIXIR-FR",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IFB%20-%20ELIXIR-FR/?format=api"
                }
            ],
            "organisedByTeams": [],
            "logo_url": "https://ressources.france-bioinformatique.fr/sites/default/files/sincellTE_logo_0_2.png",
            "updated_at": "2024-03-20T09:31:42.144175Z",
            "audienceTypes": [],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": null,
            "hoursHandsOn": null,
            "hoursTotal": null,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/199/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/405/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/422/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/177/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/606/?format=api"
            ]
        },
        {
            "id": 372,
            "name": "Introduction à l'analyse d’images avec Galaxy",
            "shortName": "",
            "description": "L’objectif de cette formation est de se familiariser avec les premières étapes à l’analyse d’images. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main des ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à l’analyse d’images, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- extraire des métadonnées d’une image,\r\n- convertir, filtrer et segmenter une image",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_3383",
                "http://edamontology.org/topic_3382"
            ],
            "keywords": [
                "Galaxy"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                },
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:25:36.663764Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 133,
                    "name": "Introduction to image analysis using Galaxy",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Introduction%20to%20image%20analysis%20using%20Galaxy/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- How to handle images in Galaxy.\r\n- How to perform basic image processing in Galaxy",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": []
        },
        {
            "id": 344,
            "name": "Analyses Single Cell RNA-seq (ScRNA-seq) avec R",
            "shortName": "",
            "description": "Cette formation introduira notamment la librairie Seurat permettant la manipulation et l'analyse de données Single Cell RNA-seq ainsi que la visualisation des résultats d'analyse\r\n\r\n- Rappels des concepts du séquençage Single Cell RNA-seq\r\n- Importation des données Single Cell dans R\r\n- Intégration de données Single Cell multiples\r\n- Quality Check et pré-traitement des données\r\n- Normalisation de données\r\n- Identification de marqueurs\r\n- Clustering et assignation cellulaire\r\n- Analyse différentielle des groupes cellulaires\r\n- Savoir intégrer les données de spatialisation\r\n- Savoir intégrer les données de trajectoire\r\n- Savoir intégrer les données de communication cellulaire\r\n- Savoir intégrer les données d'épigénétique (ATAC-seq)",
            "homepage": "https://cnrsformation.cnrs.fr/analyses-single-cell-rna-seq-scrna-seq-avec-r?axe=176",
            "is_draft": false,
            "costs": [],
            "topics": [],
            "keywords": [
                "Bioinformatics & Biomedical",
                "R Language",
                "R",
                "NGS Sequencing Data Analysis"
            ],
            "prerequisites": [
                "Basic knowledge of R",
                "R programming"
            ],
            "openTo": "Everyone",
            "accessConditions": "Maîtrise du langage R\r\nAvoir suivi le stage \"Langage R : introduction\" ou niveau équivalent.\r\nAfin de vérifier que votre maîtrise du langage R est suffisante pour pouvoir suivre ce stage, nous vous invitons à effectuer et à renvoyer le test téléchargeable\r\nhttps://cnrsformation.cnrs.fr/data/STG_23294_55153.docx",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/154/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 6,
                    "name": "CNRS formation entreprise",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20formation%20entreprise/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 1,
                    "name": "CNRS formation entreprises",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/CNRS%20formation%20entreprises/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 6,
                    "name": "CBiB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/CBiB/?format=api"
                }
            ],
            "logo_url": "https://services.cbib.u-bordeaux.fr/utils/logo_cbib.png",
            "updated_at": "2023-08-31T09:19:56.754683Z",
            "audienceTypes": [
                "Graduate",
                "Professional (initial)"
            ],
            "audienceRoles": [
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [],
            "learningOutcomes": "- Savoir expertiser et manipuler des données issues d'expériences Single Cell RNA-seq\r\n- Savoir mener une analyse différentielle à de multiples niveaux\r\n- Savoir intégrer des données complémentaires pour l'analyse Single Cell RNA-seq (spatial, trajectoire, cell communication, cell identification...)",
            "hoursPresentations": null,
            "hoursHandsOn": null,
            "hoursTotal": null,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/650/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/653/?format=api"
            ]
        },
        {
            "id": 298,
            "name": "LINUX",
            "shortName": "",
            "description": "This training session is organized by the Genotoul bioinfo platform and aims at learning sequence analysis. This training session has been designed to familiarize yourself with the platform resources and its organization. You will learn to access the platform from your work station, what is an Linux environment and how to use it, how to create and manipulate files, how to transfer them from and to your personal computer.\r\n\r\nThis training is focused on practice. It consists of 3 modules with a large variety of exercises:\r\n\r\n- Connect to « genotoul » server (09:00 am to 10:30 am): Platform presentation, Linux basics, opening an user account, Putty installation, first connection.\r\n- Files and basics commands  (10:45 am to 12:00 pm): types of files and secure access, file manipulation commands, text editors and viewers, disk space management .\r\n- Transfers and file manipulation (14:00 pm to 17:00 pm): download/transfer, compress/uncompress, utility commands and data extraction, output redirections.",
            "homepage": "http://bioinfo.genotoul.fr/index.php/events/linux-2-2/",
            "is_draft": false,
            "costs": [
                "Non-academic: 550€ + 20% taxes (TVA)",
                "Academic but non-INRAE: 170 € + 20% taxes (TVA)",
                "For INRAE's staff: 150 € no VAT charged;"
            ],
            "topics": [
                "http://edamontology.org/topic_3316"
            ],
            "keywords": [],
            "prerequisites": [
                "none"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 37,
                    "name": "MIAT - Mathématiques et Informatique Appliquées de Toulouse",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT%20-%20Math%C3%A9matiques%20et%20Informatique%20Appliqu%C3%A9es%20de%20Toulouse/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 22,
                    "name": "Genotoul-bioinfo",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api"
                }
            ],
            "logo_url": "http://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png",
            "updated_at": "2025-12-01T11:56:11.488237Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "You will learn to access the platform genotoul bioinfo from your work station, what is an Linux environment and how to use it, how to create and manipulate files, how to transfer them from and to your personal computer.",
            "hoursPresentations": 3,
            "hoursHandsOn": 3,
            "hoursTotal": 6,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/476/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/608/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/447/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/667/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/632/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/528/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/719/?format=api"
            ]
        },
        {
            "id": 368,
            "name": "Introduction à l'annotation de génomes bactériens avec Galaxy",
            "shortName": "",
            "description": "L’objectif est cette formation de se familiariser avec les étapes et les outils pour annoter des génomes bactériens. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de l’annotation de génomes bactériens en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à l’annotation de génomes bactériens, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- faire tourner une série d’outils pour annoter un génome bactérien avec différents éléments génomiques,\r\n- évaluer l’annotation\r\n- visualiser un génome bactérien et ses annotations",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_0622",
                "http://edamontology.org/topic_3301",
                "http://edamontology.org/topic_0219",
                "http://edamontology.org/topic_0097"
            ],
            "keywords": [
                "Bacterial isolate",
                "Galaxy",
                "Structural and functional annotation of genomes"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                },
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:22:51.682232Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 129,
                    "name": "Bacterial Genome Annotation",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Bacterial%20Genome%20Annotation/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Run a series of tools to annotate a draft bacterial genome for different types of genomic components\r\n- Evaluate the annotation\r\n- Process the outputs to format them for visualization needs\r\n- Visualize a draft bacterial genome and its annotations",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/598/?format=api"
            ]
        },
        {
            "id": 288,
            "name": "Introduction to Linux",
            "shortName": "BirdLinux",
            "description": "Objectives\r\n- Understand the principles and advantages of the Linux system\r\n- Know and use the main bash commands. Ability to chain multiple commands using pipes\r\n- Launch programs with arguments\r\n- Gain independence to perform command line analyses\r\n\r\nPedagogical Content\r\n- Introduction to the Linux system.\r\n- File system: directory structure, paths, home directory, file and directory management.\r\n- Principle of protections: reading file attributes, access rights, management of user groups.\r\n- Shell usage: command reminders, input/output redirection, history, completion, launching programs with arguments.\r\n- Commands relevant to bioinformatics: grep, cut, sed, sort, more, etc.\r\n- Connection (ssh) - how to start a session from Linux or Windows PowerShell",
            "homepage": "https://pf-bird.univ-nantes.fr/training/",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/596/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [],
            "organisedByTeams": [
                {
                    "id": 16,
                    "name": "BiRD",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/BiRD/?format=api"
                }
            ],
            "logo_url": "https://pf-bird.univ-nantes.fr/medias/photo/small_1612545616928-png",
            "updated_at": "2024-02-08T15:29:55.120700Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Biologists",
                "All"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": 1,
            "hoursHandsOn": 6,
            "hoursTotal": 7,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/601/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/639/?format=api"
            ]
        }
    ]
}