Training List
Handles creating, reading and updating training events.
GET /api/training/?format=api&offset=320&ordering=-hoursTotal
{ "count": 383, "next": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=340&ordering=-hoursTotal", "previous": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=300&ordering=-hoursTotal", "results": [ { "id": 365, "name": "BIGomics, Génomique Comparative", "shortName": "BOGC", "description": "Ce module vise à fournir une expérience d’analyse de données de génomique.\r\nLes technologies Next Generation Sequencing (NGS) ont conduit à une production massive de\r\ndonnées « Omiques » pour les plantes cultivées majeures, ce qui demande de nouvelles\r\napproches d’analyses haut débit. La connaissance de ces approches et des outils qui en\r\ndécoulent pour analyser la séquence et la structure des génomes, les annoter et caractériser\r\nleur diversité et leurs profils d’expression permet d’aborder des questions de recherche\r\nbiologique avancée sur la diversité et l’adaptation des plantes. Les espèces prises en\r\nconsidération sont des espèces phares des instituts de recherche agronomique de Montpellier\r\net font partie des cultures les plus importantes pour l’agriculture mondiale. Des plateformes\r\nd’outils bioinformatiques récents reposant sur des centres de calcul et de stockage haute\r\ncapacité, sont en place pour analyser des jeux de données originales permettant de mieux\r\ncomprendre comment les génomes de plantes évoluent et s’expriment. L’ensemble de ces\r\nconnaissances Findable, Accessible, Interoperable, Reusable car intégré dans des systèmes\r\nd’information peut soutenir l'identification de gènes responsables de caractères adaptatifs ou\r\nde production. La mobilisation de jeunes chercheurs sur ces sujets est primordiale tant la\r\ndemande est importante.\r\nLe module est structuré sous la forme de cours et de travaux tutorés avec la rencontre de\r\ngénéticiens et de bioinformaticiens permettant d’appréhender les formes variées des progrès\r\nen bioanalyse génomique. Il permet d’acquérir les lignes directrices pour l’accès, l'utilisation\r\net l'analyse de différents types de données omique (e.g. (épi)génomique, transcriptomique,\r\nprotéique, métabolique) en vue d’accélérer les recherches en génomique fonctionnelle et\r\nbiotechnologie des plantes.\r\nL’évaluation sera faite sur la base de la participation et de la qualité du projet proposé par\r\nl’étudiant en fin de module, individuellement ou en binôme, suivant les consignes détaillées en\r\ndébut de module", "homepage": "https://bioagro.edu.umontpellier.fr/files/2021/04/HAA906V_Bigomics.pdf", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_0797", "http://edamontology.org/topic_3810", "http://edamontology.org/topic_3056", "http://edamontology.org/topic_0780" ], "keywords": [ "Phylogeny", "Biodiversity", "NGS Data Analysis" ], "prerequisites": [ "Basic knowledge of R" ], "openTo": "Everyone", "accessConditions": "Inscription via un formulaire Moodle", "maxParticipants": 50, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/573/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 50, "name": "CIRAD", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/CIRAD/?format=api" }, { "id": 85, "name": "IRD", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IRD/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 24, "name": "South Green", "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api" } ], "logo_url": "https://raw.githubusercontent.com/SouthGreenPlatform/trainings/gh-pages/images/southgreenlong.png", "updated_at": "2024-03-20T11:30:31.480815Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 16, "hoursHandsOn": 34, "hoursTotal": 50, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/605/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/591/?format=api" ] }, { "id": 279, "name": "Annotation and analysis of prokaryotic genomes using the MicroScope platform", "shortName": "MicroScope training", "description": "In an effort to inform members of the research community about our annotation methods, to provide training for collaborators and other scientists who use the MicroScope platfom, and to inform scientific public on the analysis available in PkGDB (Prokaryotic Genome DataBase), we have developed a 4.5-day course in Microbial Genome Annotation and Comparative Analysis using the MaGe graphical interfaces.\r\n\r\nThis course will familiarize attendees with LABGeM’s annotation pipeline and the manual annotation software MaGe (Magnifying Genome) . No specific bioinformatics skill is required: detailed instruction on the algorithm developed in each annotation methods can be found in specific training courses on «Genomic sequences analysis». Here we focus on the general idea behind each method and, above all, the way you can interpret the corresponding results and combine them with other evidences in order to change or correct the current automatic functional annotation of a given gene, if necessary.\r\n\r\nThis course will also describe how to perform effective searches and analysis of procaryotic data using the graphical functionalities of the MaGe’s interfaces. Because of the numerous pre-computation available in our system (results of “common” annotation tools, synteny with all complete bacterial genomes, metabolic pathway reconstruction, fusion/fission events, genomic islands, …), many practical exercises allow attendees to get familiar with the use the MaGe graphical interfaces in order to efficiently explore these sets of results.", "homepage": "https://labgem.genoscope.cns.fr/professional-trainings/microscope-professional-trainings/training-annotation-analysis-of-prokaryotic-genomes-using-the-microscope-platform/", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0797", "http://edamontology.org/topic_0085", "http://edamontology.org/topic_3301" ], "keywords": [], "prerequisites": [ "Licence" ], "openTo": "Everyone", "accessConditions": "External training sessions can also be scheduled on demand, in France or abroad. See : https://labgem.genoscope.cns.fr/professional-trainings/microscope-professional-trainings/external-microscope-professional-training-sessions/", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/90/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 15, "name": "Laboratory of Bioinformatics Analyses for Genomics and Metabolism", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Laboratory%20of%20Bioinformatics%20Analyses%20for%20Genomics%20and%20Metabolism/?format=api" } ], "organisedByOrganisations": [ { "id": 67, "name": "University Paris-Saclay", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/University%20Paris-Saclay/?format=api" } ], "organisedByTeams": [ { "id": 9, "name": "MicroScope", "url": "https://catalogue.france-bioinformatique.fr/api/team/MicroScope/?format=api" } ], "logo_url": "https://labgem.genoscope.cns.fr/wp-content/uploads/2019/06/MicroScope_logo-300x210.png", "updated_at": "2025-12-09T09:10:02.012461Z", "audienceTypes": [ "Undergraduate", "Graduate", "Professional (continued)" ], "audienceRoles": [ "Researchers", "Life scientists", "Biologists", "Curators" ], "difficultyLevel": "Intermediate", "trainingMaterials": [], "learningOutcomes": "Annotation and comparative analysis of bacterial genomes:\r\n\r\n- acquire theoretical and practical knowledge of genome annotation tools (structural and functional annotation, metabolic networks annotation)\r\n- interpret the results of functional annotation tools\r\nperform various comparative analyses : conserved synteny analyses, pan-genome, phylogenetic and metabolic profiles.\r\n- analyse the results of metabolic networks prediction tools and look for candidate genes for enzyme activities.\r\n- use the tools to analyse the genome(s) of interest of participants", "hoursPresentations": null, "hoursHandsOn": null, "hoursTotal": 31, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/439/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/506/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/436/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/745/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/507/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/577/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/576/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/659/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/658/?format=api" ] }, { "id": 335, "name": "FAIR_bioinfo_@_AuBi", "shortName": "FAIR_bioinfo", "description": "Introduction aux bonnes pratiques en bio-informatique afin de pérenniser son travail de recherche.\r\n\r\nCette formation permet de découvrir les bonnes pratiques dans le cadre d’un travail nécessitant des approches programmatiques (statistiques, programmation d’outils, analyses de données biologiques). Elle s’inscrit aussi dans l’aspect science-ouverte afin de rendre plus facilement disponible et pérenne le travail bio-informatique. Après une introduction aux pratiques FAIR axées notamment sur les notions de reproductibilité et de répétabilité du code, plusieurs approches seront abordées: les bonnes pratiques de partage et gestion des versions des outils utilisés ; la gestion des environnements de travail (conda, docker, singularity) ; découverte du gestionnaire de workflow Snakemake : et enfin la documentation du code avec Rmarkdown et Jupyter.", "homepage": "https://mesocentre.uca.fr/actualites/pratiques-fair-en-bioinformatique-pour-des-analyses-reproductibles", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_0769", "http://edamontology.org/topic_3068", "http://edamontology.org/topic_0091", "http://edamontology.org/topic_3307" ], "keywords": [ "Methodology", "Programming Languages & Computer Sciences", "Cloud", "Linux", "Snakemake", "Docker", "R" ], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Everyone", "accessConditions": "Having an account on Mesocentre Clermont Auvergne Infrastructure", "maxParticipants": 15, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 87, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api" }, { "id": 94, "name": "University Clermont Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/University%20Clermont%20Auvergne/?format=api" } ], "organisedByTeams": [ { "id": 31, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api" } ], "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175", "updated_at": "2023-06-14T10:18:52.160465Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 10, "hoursHandsOn": 20, "hoursTotal": 30, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/537/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/709/?format=api" ] }, { "id": 322, "name": "Introduction to Structural variant detection analyses", "shortName": "", "description": "Program\r\n\r\n* Handling mapping tools suitable for ILLUMINA and ONT data (bwa, minimap2)\r\n* SNP detection from mapping of short reads against a reference genome: SNP calling, filters and SNP annotation. Examples of possible studies based on SNP arrays\r\n* Detecting Structural Variations (SV) in short and long reads (breakdancer, sniffle)\r\n* SV detection from genome assembly and comparison (minimap2, nucmer, assemblytics, siry)", "homepage": "https://southgreenplatform.github.io/trainings//sv/", "is_draft": false, "costs": [ "Free" ], "topics": [], "keywords": [], "prerequisites": [ "Linux and knowledge of NGS formats" ], "openTo": "Internal personnel", "accessConditions": "Open to South Green close collaborators", "maxParticipants": null, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 24, "name": "South Green", "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api" } ], "logo_url": "https://southgreenplatform.github.io/trainings//images/southgreenlong.png", "updated_at": "2023-01-24T10:41:28.470404Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 14, "hoursHandsOn": 14, "hoursTotal": 28, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/564/?format=api" ] }, { "id": 290, "name": "NGS data analysis on the command line", "shortName": "NGS-analysis-cli", "description": "This hands-on course will teach bioinformatic approaches for analyzing Illumina sequencing data. Our goal is to introduce the command line skills you need to make the most of your NGS data. \r\nDuring this 4-day training we will first introduce the Linux environment, shell commands and basic R scripting. And then we will focus on two NGS data analyses -- small RNA-seq and RNA-seq -- based on published datasets from the model organism Arabidopsis thaliana", "homepage": "https://www.ibmp.cnrs.fr/bioinformatics-trainings/", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_0102", "http://edamontology.org/topic_3170", "http://edamontology.org/topic_2269", "http://edamontology.org/topic_3168" ], "keywords": [], "prerequisites": [ "none" ], "openTo": "Internal personnel", "accessConditions": "This training is dedicated to academics working in a laboratory of Unistra/CNRS.", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/124/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 79, "name": "IBMP", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IBMP/?format=api" } ], "organisedByTeams": [ { "id": 14, "name": "BiGEst", "url": "https://catalogue.france-bioinformatique.fr/api/team/BiGEst/?format=api" } ], "logo_url": null, "updated_at": "2024-01-22T14:51:37.215331Z", "audienceTypes": [], "audienceRoles": [ "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "Applied Knowledge (Know-how):\r\n- Basic proficiency at the Linux command line prompt\r\n- Basic proficiency of R (environment, objects, graphs) \r\n- Next generation sequencing (NGS) file formats; reference genomes - Mapping NGS read data to reference genomes (bowtie, samtools)\r\n- Small RNA-seq analysis; epigenomics applications (ShortStack)\r\n- RNA-seq for transcriptomics; differential gene expression analysis (HISAT2, DESeq2) - Data wrangling and visualization in R (Rstudio, ggplot2)", "hoursPresentations": 12, "hoursHandsOn": 16, "hoursTotal": 28, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/503/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/504/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/589/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/454/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/660/?format=api" ] }, { "id": 406, "name": "Analyse de données de métabarcoding", "shortName": "Métabarcoding", "description": "Cette formation est dédiée à l’analyse de données de type “metabarcoding” issues de la technologie de séquençage Illumina. Nous aborderons les différentes étapes bioinformatiques nécessaires pour transformer les données de séquençage brutes en table d’abondances. Nous présenterons également les outils et méthodologies classiquement utilisés pour décrire la diversité observée et comparer les échantillons.\r\n\r\nA l’issue des 4 jours de formation, les stagiaires connaîtront le périmètre, les avantages et limites des analyses de données de séquençage amplicons (métabarcoding). Ils seront capables d’utiliser les outils de FROGS sur les jeux de données de la formation (16S et ITS) et sauront utiliser l’application Easy16S.\r\n\r\nIls seront capables d’identifier les outils et méthodes adaptées au cadre de leurs analyses. S’ils ont en leur possession un jeu de données à analyser, ils sont encouragés à venir avec celui- ci.\r\n\r\nProgramme :\r\n\r\n\r\nAnalyses bioinformatiques sous Galaxy\r\n\r\n Introduction générale sur les données amplicons\r\n Présentation et mise en application avec la suite FROGS du nettoyage des données, du clustering, de la détection de chimères, de l’assignation taxonomique et des étapes annexes\r\n Conclusion, limite des méthodes, outils compagnons\r\n\r\nAnalyses statistiques avec Easy16S\r\n\r\n Introduction générale\r\n Import, manipulation et visualisation des données\r\n Mesure de diversités : Unifrac, Bray-Curtis, etc.\r\n Ordination et réduction de dimension : MDS\r\n Clustering et Heatmap\r\n Comparaison d’échantillons : PERMANOVA, adonis\r\n\r\nMise en application sur données personnelles ou publiques", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_3697" ], "keywords": [ "Metabarcoding" ], "prerequisites": [], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2026-02-12T10:53:42.895487Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "Cette formation est dédiée à l’analyse de données de type “metabarcoding” issues de la technologie de séquençage Illumina. Nous aborderons les différentes étapes bioinformatiques nécessaires pour transformer les données de séquençage brutes en table d’abondances. Nous présenterons également les outils et méthodologies classiquement utilisés pour décrire la diversité observée et comparer les échantillons.\r\n\r\nA l’issue des 4 jours de formation, les stagiaires connaîtront le périmètre, les avantages et limites des analyses de données de séquençage amplicons (métabarcoding). Ils seront capables d’utiliser les outils de FROGS sur les jeux de données de la formation (16S et ITS) et sauront utiliser l’application Easy16S.\r\n\r\nIls seront capables d’identifier les outils et méthodes adaptées au cadre de leurs analyses. S’ils ont en leur possession un jeu de données à analyser, ils sont encouragés à venir avec celui- ci.", "hoursPresentations": 12, "hoursHandsOn": 12, "hoursTotal": 24, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/792/?format=api" ] }, { "id": 377, "name": "RNASEQ ALIGNMENT, QUANTIFICATION AND TRANSCRIPT DISCOVERY WITH STATISTICS", "shortName": "RNASeq bioinfo / biostat", "description": "The Toulouse Genotoul bioinformatics platform, in collaboration with the Genotoul Biostatistics platform, and the MIAT unit, organize a 3,5 days long training course for bio-informaticians and biologists aiming at learning sequence analysis. It focuses on (protein coding) gene expression analysis using reads produced by ‘RNA-Seq’. This training session is designed to introduce sequences from ‘NGS’ (Next Generation Sequencing), particularly Illumina platforms (HiSeq). You will discover the standards file formats, learn about the usual biases of this type of data and run different kinds of analyses, such as spliced alignment on a reference genome, novel gene and transcript discovery, expression quantification of coding genes and transcripts. Finally you will be able to extract the differentially expressed genes.", "homepage": "https://bioinfo.genotoul.fr/index.php/events/rnaseq-alignment-transcripts-assemblies-statistics/", "is_draft": false, "costs": [ "Non-academic: 550€ + 20% taxes (TVA)", "Academic but non-INRAE: 170 € + 20% taxes (TVA)", "For INRAE's staff: 150 € no VAT charged;" ], "topics": [ "http://edamontology.org/topic_3308", "http://edamontology.org/topic_0203" ], "keywords": [ "NGS Data Analysis", "Expression" ], "prerequisites": [ "Langage R de base", "Linux/Unix", "Cluster" ], "openTo": "Everyone", "accessConditions": "Register on the training page : https://bioinfo.genotoul.fr/index.php/training-2/training/", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/642/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/739/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/300/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 15, "name": "MIAT", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT/?format=api" } ], "organisedByTeams": [ { "id": 33, "name": "Genotoul-biostat", "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-biostat/?format=api" }, { "id": 22, "name": "Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api" } ], "logo_url": "https://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png", "updated_at": "2025-12-09T09:40:46.927545Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Life scientists", "Biologists", "Bioinformaticians" ], "difficultyLevel": "Intermediate", "trainingMaterials": [ { "id": 135, "name": "Training RNASeq - bioinfo part - Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Training%20RNASeq%20-%20bioinfo%20part%20-%20Genotoul-bioinfo/?format=api" }, { "id": 136, "name": "Training RNASeq - biostat part - Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Training%20RNASeq%20-%20biostat%20part%20-%20Genotoul-bioinfo/?format=api" } ], "learningOutcomes": "", "hoursPresentations": null, "hoursHandsOn": null, "hoursTotal": 21, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/754/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/612/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/721/?format=api" ] }, { "id": 350, "name": "Formation Principes FAIR dans un projet de bioinformatique", "shortName": "FAIR-Bioinfo-Strasbourg", "description": "Cette formation sur 3 jours est destinée à des bioinformaticiens et biostatisticiens souhaitant acquérir des compétences théoriques et pratiques sur les principes \"FAIR\" (Facile à trouver, Accessible, Interopérable, Réutilisable) appliqués à un projet d'analyse et/ou de développement.", "homepage": "", "is_draft": false, "costs": [ "Free to academics" ], "topics": [], "keywords": [ "Programming Languages & Computer Sciences", "FAIR", "Snakemake", "Docker" ], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Everyone", "accessConditions": "Academics", "maxParticipants": 14, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/563/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/124/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 79, "name": "IBMP", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IBMP/?format=api" }, { "id": 83, "name": "IGBMC", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IGBMC/?format=api" } ], "organisedByTeams": [ { "id": 14, "name": "BiGEst", "url": "https://catalogue.france-bioinformatique.fr/api/team/BiGEst/?format=api" } ], "logo_url": null, "updated_at": "2023-12-20T15:44:00.254606Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Bioinformaticians" ], "difficultyLevel": "", "trainingMaterials": [], "learningOutcomes": "A l'issue de cette formation, les participants pourront mettre en oeuvre les principes de la science reproductible : encapsuler un environnement de travail (Docker, Singularity), concevoir et exécuter des workflows (Snakemake), gérer des versions de code (Git), passer à l’échelle sur un cluster de calcul (Slurm), gérer des environnements logiciels (Conda) et assurer la traçabilité de leur analyse à l’aide de Notebooks (Jupyter).", "hoursPresentations": 10, "hoursHandsOn": 11, "hoursTotal": 21, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/568/?format=api" ] }, { "id": 291, "name": "Formation au logiciel R", "shortName": "Formation au logiciel R", "description": "Introduction au logiciel R et à son utilisation pour réaliser des graphiques et faire des analyses statistiques basiques en biologie. Introduction aux bibliothèques R utiles en biologie.", "homepage": "http://www.prabi.fr/spip.php?article273", "is_draft": false, "costs": [ "Priced" ], "topics": [], "keywords": [], "prerequisites": [], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 14, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 19, "name": "PRABI-AMSB", "url": "https://catalogue.france-bioinformatique.fr/api/team/PRABI-AMSB/?format=api" } ], "logo_url": null, "updated_at": "2022-06-02T11:50:50.812642Z", "audienceTypes": [ "Professional (initial)" ], "audienceRoles": [ "Life scientists" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "- Acquérir les compétences nécessaires à l’utilisation du logiciel R\r\n- Connaître les principales analyses statistiques nécessaires en biologie et les utiliser sous R\r\n- Réaliser des graphiques sous R\r\n- Connaitre les bibliothèques R utiles en Biologie", "hoursPresentations": 9, "hoursHandsOn": 12, "hoursTotal": 21, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/437/?format=api" ] }, { "id": 393, "name": "Pandas : gérer, analyser, visualiser vos données efficacement", "shortName": "", "description": "Les objectifs de cette formation sont :\r\n- Importer, exporter, gérer, analyser des données tabulaires\r\n- Calculer des données dérivées\r\n- Combiner et interroger des données complexes\r\n- Calculer des statistiques descriptives des données\r\n- Visualiser et synthétiser les données sous formes graphiques", "homepage": "https://cnrsformation.cnrs.fr/python-et-module-pandas-pour-gerer-et-analyser-donnees?mc=Pandas", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0091" ], "keywords": [ "Python Language" ], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Everyone", "accessConditions": "- Notions de base en informatique : fichiers, répertoire, organisation des données\r\n- Connaissance de base de la programmation en Python (activité régulière d'écriture de scripts en Python)\r\n- Maitrise d'un environnement de développement ou éditeur de programmes/scripts", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/528/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 6, "name": "CNRS formation entreprise", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20formation%20entreprise/?format=api" } ], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 7, "name": "ATGC", "url": "https://catalogue.france-bioinformatique.fr/api/team/ATGC/?format=api" } ], "logo_url": "http://www.atgc-montpellier.fr/pictures/ATGClogo.svg", "updated_at": "2025-02-11T08:32:41.454179Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [], "difficultyLevel": "", "trainingMaterials": [], "learningOutcomes": "Jour 1\r\nMatin :\r\n- Initiation Pandas, structures de données Series et DataFrame, chargement de données à partir de fichiers de données tabulaires\r\nAprès-midi :\r\n- Requêtes et outils de sélection\r\n\r\nJour 2\r\nMatin :\r\n- Fusion, concaténation, jointure de tables, regroupement de sous-ensembles\r\nAprès-midi :\r\n- Indexation simple et multiple, réindexation, export et sauvegarde\r\n\r\nJour 3\r\nMatin :\r\n- Visualisation et réalisation de graphiques\r\nAprès-midi :\r\n- Analyse de données des participants", "hoursPresentations": null, "hoursHandsOn": null, "hoursTotal": 21, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/702/?format=api" ] }, { "id": 349, "name": "Reproducible Research", "shortName": "", "description": "The following topics and tools are covered in the course:\r\n\r\n Data management\r\n Project organisation\r\n Git\r\n Conda\r\n Snakemake\r\n Nextflow\r\n R Markdown\r\n Jupyter\r\n Docker\r\n Singularity\r\n\r\nAt the end of the course, students should be able to:\r\n\r\n Use good practices for data analysis and management\r\n Clearly organise their bioinformatic projects\r\n Use the version control system Git to track and collaborate on code\r\n Use the package and environment manager Conda\r\n Use and develop workflows with Snakemake and Nextflow\r\n Use R Markdown and Jupyter Notebooks to document and generate automated reports for their analyses\r\n Use Docker and Singularity to distribute containerized computational environments", "homepage": "https://southgreenplatform.github.io/training_reproducible_research/", "is_draft": false, "costs": [ "Free" ], "topics": [], "keywords": [], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Internal personnel", "accessConditions": "Open to South Green close collaborators", "maxParticipants": 20, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 24, "name": "South Green", "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api" } ], "logo_url": "https://southgreenplatform.github.io/trainings//images/southgreenlong.png", "updated_at": "2023-12-04T15:16:00.921744Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "At the end of the course, students should be able to:\r\n\r\n Use good practices for data analysis and management\r\n Clearly organise their bioinformatic projects\r\n Use the version control system Git to track and collaborate on code\r\n Use the package and environment manager Conda\r\n Use and develop workflows with Snakemake and Nextflow\r\n Use R Markdown and Jupyter Notebooks to document and generate automated reports for their analyses\r\n Use Docker and Singularity to distribute containerized computational environments", "hoursPresentations": 8, "hoursHandsOn": 13, "hoursTotal": 21, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/567/?format=api" ] }, { "id": 388, "name": "Analysis of shotgun metagenomic data", "shortName": "", "description": "This training session is organized by the Genotoul bioinfo platform. This course is dedicated to the analysis of prokaryotic shotgun metagenomic data from Illumina and Pacbio HiFi sequencing technology. \r\n\r\nAfter an overview of metagenomics and the biases and limitations of analyses, we will look at the main steps involved in analysing metagenomic data and launch independent tools on the genobioinfo cluster.\r\nLearners will then test a workflow to automate processing on a test dataset (metagWGS ).\r\nOn the third day, learners will choose which analysis strategy to start with according to their experimental design and launch the first stage of metagWGS on their own data.\r\nBy the end of the course, trainees will be familiar with the scope, advantages and limitations of shotgun sequencing data analysis and will have started the analysis on their own data.\r\n\r\ncalendar\r\n \r\n\r\nThis training is focused on practice. It consists of several modules with a large variety of exercises:\r\n\r\nFirst Day\r\nStart at 09:00 am\r\nTour de table\r\nIntroduction to metagenomics, Illumina and Pacbio data, analysis stages, analysis limits, etc.\r\nPresentation of some key tools for each stage\r\nPractical work on the main stages launched independently\r\nEnd at 17:00 pm\r\nSecond Day\r\nStart at 09:00 am\r\nIntroduction to the advantages and disadvantages of workflows and containers\r\nLaunch of the data cleansing stage\r\nLaunch of the rest of the workflow and analysis of the multiQC report\r\nEnd at 17:00 pm\r\nThird Day – BYOD\r\nStart at 09:00 am\r\nDefine the analysis strategy and launch the start of the analysis of your own data.\r\nEnd at 17:00 pm maximum", "homepage": "https://bioinfo.genotoul.fr/index.php/events/analysis-of-shotgun-metagenomic-data/", "is_draft": false, "costs": [ "Non-academic for non-academic: 1650€ + 20% taxes (TVA)", "Academic non-INRAE for academic but non-INRAE: 510 € + 20% taxes (TVA)", "INRAE for INRAE's staff: 450 € no VAT charged" ], "topics": [ "http://edamontology.org/topic_3174" ], "keywords": [ "NGS Data Analysis", "Metagenomics" ], "prerequisites": [ "Linux/Unix", "Cluster" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/300/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" }, { "id": 37, "name": "MIAT - Mathématiques et Informatique Appliquées de Toulouse", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT%20-%20Math%C3%A9matiques%20et%20Informatique%20Appliqu%C3%A9es%20de%20Toulouse/?format=api" } ], "organisedByTeams": [ { "id": 22, "name": "Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api" } ], "logo_url": "https://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png", "updated_at": "2025-12-09T09:19:28.199012Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Life scientists", "Biologists", "Bioinformaticians" ], "difficultyLevel": "Intermediate", "trainingMaterials": [ { "id": 151, "name": "Metagenomic training - Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Metagenomic%20training%20-%20Genotoul-bioinfo/?format=api" } ], "learningOutcomes": "", "hoursPresentations": 3, "hoursHandsOn": 15, "hoursTotal": 18, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/670/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/758/?format=api" ] }, { "id": 358, "name": "Traitement bioinformatique et analyse différentielle de données d’expression RNA-seq sous Galaxy", "shortName": "Analyse données RNA-seq sous Galaxy", "description": "Objectifs pédagogiques\r\nA l’issue de cette formation, vous serez capable, dans le cadre d’une analyse de données RNA- seq avec génome de référence et plan d’expérience simple :\r\n* de connaître le vocabulaire et les concepts bioinformatiques et biostatistiques ;\r\n* de savoir enchaîner de façon pertinente un ensemble d’outils bioinformatiques et biostatistiques dans l’environnement Galaxy ;\r\n* de comprendre le matériel et méthodes d’un article du domaine ;\r\n* d’évaluer la pertinence d’une analyse RNA-seq en identifiant les éléments clefs et comprendre les particularités liées à la nature des données.\r\n\r\nProgramme\r\nBioinformatique :\r\n* Obtenir des données de qualité : nettoyage, filtrage, qualité\r\n* Aligner les lectures sur un génome de référence\r\n* Détecter de nouveaux transcrits\r\n* Quantifier l’expression des gènes\r\n* Préparer et déployer unensemble d’analyses sur plusieurs échantillons\r\n\r\nBiostatistique :\r\n* Construire un plan d’expérience simple\r\n* Normaliser les données de comptage\r\n* Identifier les gènes différentiellements exprimés\r\n* Se sensibiliser aux tests multiples\r\n\r\nAnalyse de protocoles Bioinformatique et Biostatistiques issus de la littérature", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0102", "http://edamontology.org/topic_0203", "http://edamontology.org/topic_3308", "http://edamontology.org/topic_3170" ], "keywords": [ "Gene expression differential analysis", "RNA-seq", "Transcriptomics" ], "prerequisites": [ "Galaxy - Basic usage" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2025-01-23T15:20:05.977558Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "A l’issue de cette formation, vous serez capable, dans le cadre d’une analyse de données RNA- seq avec génome de référence et plan d’expérience simple :\r\n\r\n* de connaître le vocabulaire et les concepts bioinformatiques et biostatistiques ;\r\n* de savoir enchaîner de façon pertinente un ensemble d’outils bioinformatiques et biostatistiques dans l’environnement Galaxy ;\r\n* de comprendre le matériel et méthodes d’un article du domaine ;\r\n* d’évaluer la pertinence d’une analyse RNA-seq en identifiant les éléments clefs et comprendre les particularités liées à la nature des données.", "hoursPresentations": 6, "hoursHandsOn": 12, "hoursTotal": 18, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/583/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/779/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/690/?format=api" ] }, { "id": 380, "name": "INTRODUCTION TO PYTHON", "shortName": "Python", "description": "The Toulouse Genotoul bioinformatics platform, organizes a 2 days long training course for non computer scientist and biologists aiming at learning the foundation of Python programming. In this training you will learn the basics of programming (variables, functions, control structures such as “if” condition, “for” loop”), writing simple programs which read files, and write results to others. The training course does not require any knowledge in programming, but basic Linux/bash commands are required (cd, ls).\r\n\r\nThis training focuses on practice. It consists of modules with a large variety of exercises described hereunder (PROVISIONAL SCHEDULE):\r\n\r\nUsing a Jupyter notebook (Day 1).\r\nUsing variables (Day 1).\r\nBasic operations and functions (Day 1).\r\nReading a file, writing to a file (Day 1).\r\nCharacter string manipulation (Day 1).\r\nLists and dictionaries (Day 2).\r\nThe if and for controls (Day 2).\r\nBases of algorithms (Day 2).", "homepage": "https://bioinfo.genotoul.fr/index.php/events/python/", "is_draft": false, "costs": [], "topics": [ "http://edamontology.org/topic_3307" ], "keywords": [ "Python Language" ], "prerequisites": [ "Linux/Unix" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/642/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 15, "name": "MIAT", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT/?format=api" } ], "organisedByTeams": [ { "id": 22, "name": "Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api" } ], "logo_url": "http://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png", "updated_at": "2025-12-01T11:55:51.057828Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Life scientists" ], "difficultyLevel": "Novice", "trainingMaterials": [ { "id": 142, "name": "Introduction to python - Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Introduction%20to%20python%20-%20Genotoul-bioinfo/?format=api" } ], "learningOutcomes": "", "hoursPresentations": 5, "hoursHandsOn": 9, "hoursTotal": 14, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/635/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/757/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/718/?format=api" ] }, { "id": 313, "name": "RNA-Seq analysis", "shortName": "", "description": "Introduction to RNA-Seq analysis", "homepage": "https://southgreenplatform.github.io/trainings//rnaseq/", "is_draft": false, "costs": [ "Free" ], "topics": [], "keywords": [], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Internal personnel", "accessConditions": "Open to South Green close collaborators", "maxParticipants": 15, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 24, "name": "South Green", "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api" } ], "logo_url": "https://southgreenplatform.github.io/trainings//images/southgreenlong.png", "updated_at": "2023-12-04T15:04:39.023455Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Intermediate", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 6, "hoursHandsOn": 8, "hoursTotal": 14, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/473/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/471/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/563/?format=api" ] }, { "id": 250, "name": "Linux For Jedi", "shortName": "", "description": "This course offers to develop and enhance advanced Linux shell command line and scripting skills for the processing and analysis of NGS data. We will work on a HPC server and use linux powerful commands to allow to analyze big amount of biological data.", "homepage": "https://southgreenplatform.github.io/trainings/linuxJedi/", "is_draft": false, "costs": [ "Free" ], "topics": [], "keywords": [], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Internal personnel", "accessConditions": "Open to South Green close collaborators", "maxParticipants": 15, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 24, "name": "South Green", "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api" } ], "logo_url": "https://southgreenplatform.github.io/trainings//images/southgreenlong.png", "updated_at": "2022-06-02T11:50:50.812642Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Intermediate", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 4, "hoursHandsOn": 10, "hoursTotal": 14, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/469/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/382/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/560/?format=api" ] }, { "id": 375, "name": "RNASeq Analysis", "shortName": "RNASeq Analysis", "description": "Objectives\r\n- Understand the key steps in RNASeq data analysis for a differential expression study\r\n- Know how to perform command-line analysis using Snakemake.\r\n\r\nPedagogical Content\r\nDay 1\r\n- Principle of RNASeq technology: objectives and experimental design.\r\n- Data quality assessment (FastQC, MultiQC).\r\n- Sequence alignment to a reference genome (STAR).\r\n\r\nDay 2\r\n- Differential gene expression analysis (HTSeqCount, DESeq2).\r\n- Functional annotation (GO, Kegg).\r\n- Using the Snakemake workflow system.\r\n- Comparison between RNASeq and 3’SRP methods.\r\n\r\nThe theoretical part is followed by a pipeline run step-by-step on a test dataset. \r\nIt will be possible to start an analysis on your own data.", "homepage": "https://pf-bird.univ-nantes.fr/training/rnaseq/", "is_draft": false, "costs": [ "Priced" ], "topics": [], "keywords": [], "prerequisites": [], "openTo": "Everyone", "accessConditions": "- Be comfortable with basic Linux commands or have completed the training course “Introduction to the command-line interface.”\r\n- Be familiar with the use of a computing cluster, conda/mamba et snakemake or have completed the training course “Best practices in bioinformatics.”", "maxParticipants": 12, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 16, "name": "BiRD", "url": "https://catalogue.france-bioinformatique.fr/api/team/BiRD/?format=api" } ], "logo_url": "https://bird.univ-nantes.io/website/images/logo/logo.svg", "updated_at": "2026-01-27T11:11:26.174423Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 7, "hoursHandsOn": 7, "hoursTotal": 14, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/746/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/603/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/640/?format=api" ] }, { "id": 405, "name": "Annotation et comparaison de génomes bactériens", "shortName": "Annotation et comparaison de génomes bactériens", "description": "Connaître les concepts et les principales méthodes bioinformatiques pour annoter automatiquement et comparer un jeu de données de génomes bactériens. Construire et évaluer la qualité d’un jeu de données publiques. Évaluer la qualité et annoter automatiquement un jeu de données. Savoir mettre en oeuvre une comparaison de génomes et en interpréter les résultats.\r\n\r\nProgramme :\r\n\r\n* Construction d’un jeu de données :\r\n Téléchargement de données publiques\r\n Evaluation de la qualité d’un jeu de données\r\n\r\n* Principes et mise en œuvre d’une annotation automatique d’un génome bactérien\r\n\r\n * Caractérisation de la diversité génomique\r\n\r\n * Construction de pangénomes\r\n\r\n * Analyse des résultats :\r\n Résultats et métriques d’un pangénome\r\n Notions élémentaires de phylogénomique\r\n Visualisation et interprétation des résultats\r\n\r\n * Mise en pratique sur un jeu de données bactériens, utilisation des logiciels dRep, Quast, Bakta et PPanGGOLiN sous Galaxy.", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0622", "http://edamontology.org/topic_0797", "http://edamontology.org/topic_3299" ], "keywords": [ "Genome annotation", "Comparative genomics" ], "prerequisites": [], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2026-02-12T10:45:53.661422Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Biologists", "Bioinformaticians" ], "difficultyLevel": "", "trainingMaterials": [], "learningOutcomes": "Connaître les concepts et les principales méthodes bioinformatiques pour annoter automatiquement et comparer un jeu de données de génomes bactériens. Construire et évaluer la qualité d’un jeu de données publiques. Évaluer la qualité et annoter automatiquement un jeu de données. Savoir mettre en oeuvre une comparaison de génomes et en interpréter les résultats.", "hoursPresentations": 6, "hoursHandsOn": 6, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/791/?format=api" ] }, { "id": 351, "name": "Introduction au language R / Introduction to R langage", "shortName": "Introduction to R langage", "description": "Objectifs pédagogiques :\r\nÀ l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du langage R et ses principes. Ils seront capables de les appliquer pour effectuer des calculs ou des représentations graphiques simples. Ils seront de plus autonomes pour manipuler leurs tableaux de données.\r\nAttention : ce module n’est ni un module de statistique, ni un module d’analyse statistique des données.\r\n\r\nProgramme :\r\n* Structures et manipulation de données\r\n* Principaux éléments du langage de programmation (boucle, fonctions…)\r\n* Différentes représentations graphiques de données/résultats (plot, histogramme, boxplot)", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0605" ], "keywords": [ "R Language" ], "prerequisites": [], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T12:51:01.486572Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 2, "hoursHandsOn": 10, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/570/?format=api" ] }, { "id": 363, "name": "Introduction au text-mining avec AlvisNLP", "shortName": "Introduction to text-mining with AlvisNLP", "description": "Objectifs pédagogiques\r\nCette formation est dédiée à l’analyse de données textuelles (text-mining). L’objectif est l’acquisition des principales techniques pour la Reconnaissance d’Entités Nommées (REN) à partir de textes. Les entités nommées étudiées dans cette formation sont des objets ou concepts d’intérêts mentionnés dans les articles scientifiques ou les champs en texte libre (taxons, gènes, protéines, marques, etc.).\r\n\r\nLes participants vont acquérir les compétences pratiques nécessaires pour effectuer de façon autonome une première approche pour une application de text-mining. Le format est celui de Travaux Pratiques utilisant AlvisNLP, un outil pour la création de pipelines en text-mining développé par l’équipe Bibliome de l’unité MaIAGE. La formation s’adresse à des chercheurs et ingénieurs en (bio)-informatique ou en maths-info-stats appliquées\r\n\r\nProgramme\r\n* Présentation du text-mining et de la Reconnaissance des Entités Nommées (REN)\r\n* Travaux Pratiques sur des techniques de REN en utilisant AlvisNLP\r\n* Projection de lexiques\r\n* Application de patrons\r\n* Apprentissage automatique", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0605", "http://edamontology.org/topic_3474" ], "keywords": [ "Text mining" ], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T14:56:19.822106Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Life scientists", "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "Cette formation est dédiée à l’analyse de données textuelles (text-mining). L’objectif est l’acquisition des principales techniques pour la Reconnaissance d’Entités Nommées (REN) à partir de textes. Les entités nommées étudiées dans cette formation sont des objets ou concepts d’intérêts mentionnés dans les articles scientifiques ou les champs en texte libre (taxons, gènes, protéines, marques, etc.).\r\n\r\nLes participants vont acquérir les compétences pratiques nécessaires pour effectuer de façon autonome une première approche pour une application de text-mining. Le format est celui de Travaux Pratiques utilisant AlvisNLP, un outil pour la création de pipelines en text-mining développé par l’équipe Bibliome de l’unité MaIAGE. La formation s’adresse à des chercheurs et ingénieurs en (bio)-informatique ou en maths-info-stats appliquées", "hoursPresentations": 5, "hoursHandsOn": 7, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/588/?format=api" ] } ] }