Training List
Handles creating, reading and updating training events.
GET /api/training/?format=api&offset=320&ordering=-hoursTotal
{ "count": 378, "next": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=340&ordering=-hoursTotal", "previous": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=300&ordering=-hoursTotal", "results": [ { "id": 322, "name": "Introduction to Structural variant detection analyses", "shortName": "", "description": "Program\r\n\r\n* Handling mapping tools suitable for ILLUMINA and ONT data (bwa, minimap2)\r\n* SNP detection from mapping of short reads against a reference genome: SNP calling, filters and SNP annotation. Examples of possible studies based on SNP arrays\r\n* Detecting Structural Variations (SV) in short and long reads (breakdancer, sniffle)\r\n* SV detection from genome assembly and comparison (minimap2, nucmer, assemblytics, siry)", "homepage": "https://southgreenplatform.github.io/trainings//sv/", "is_draft": false, "costs": [ "Free" ], "topics": [], "keywords": [], "prerequisites": [ "Linux and knowledge of NGS formats" ], "openTo": "Internal personnel", "accessConditions": "Open to South Green close collaborators", "maxParticipants": null, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 24, "name": "South Green", "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api" } ], "logo_url": "https://southgreenplatform.github.io/trainings//images/southgreenlong.png", "updated_at": "2023-01-24T10:41:28.470404Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 14, "hoursHandsOn": 14, "hoursTotal": 28, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/564/?format=api" ] }, { "id": 290, "name": "NGS data analysis on the command line", "shortName": "NGS-analysis-cli", "description": "This hands-on course will teach bioinformatic approaches for analyzing Illumina sequencing data. Our goal is to introduce the command line skills you need to make the most of your NGS data. \r\nDuring this 4-day training we will first introduce the Linux environment, shell commands and basic R scripting. And then we will focus on two NGS data analyses -- small RNA-seq and RNA-seq -- based on published datasets from the model organism Arabidopsis thaliana", "homepage": "https://www.ibmp.cnrs.fr/bioinformatics-trainings/", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_0102", "http://edamontology.org/topic_3170", "http://edamontology.org/topic_2269", "http://edamontology.org/topic_3168" ], "keywords": [], "prerequisites": [ "none" ], "openTo": "Internal personnel", "accessConditions": "This training is dedicated to academics working in a laboratory of Unistra/CNRS.", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/124/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 79, "name": "IBMP", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IBMP/?format=api" } ], "organisedByTeams": [ { "id": 14, "name": "BiGEst", "url": "https://catalogue.france-bioinformatique.fr/api/team/BiGEst/?format=api" } ], "logo_url": null, "updated_at": "2024-01-22T14:51:37.215331Z", "audienceTypes": [], "audienceRoles": [ "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "Applied Knowledge (Know-how):\r\n- Basic proficiency at the Linux command line prompt\r\n- Basic proficiency of R (environment, objects, graphs) \r\n- Next generation sequencing (NGS) file formats; reference genomes - Mapping NGS read data to reference genomes (bowtie, samtools)\r\n- Small RNA-seq analysis; epigenomics applications (ShortStack)\r\n- RNA-seq for transcriptomics; differential gene expression analysis (HISAT2, DESeq2) - Data wrangling and visualization in R (Rstudio, ggplot2)", "hoursPresentations": 12, "hoursHandsOn": 16, "hoursTotal": 28, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/503/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/504/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/589/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/454/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/660/?format=api" ] }, { "id": 350, "name": "Formation Principes FAIR dans un projet de bioinformatique", "shortName": "FAIR-Bioinfo-Strasbourg", "description": "Cette formation sur 3 jours est destinée à des bioinformaticiens et biostatisticiens souhaitant acquérir des compétences théoriques et pratiques sur les principes \"FAIR\" (Facile à trouver, Accessible, Interopérable, Réutilisable) appliqués à un projet d'analyse et/ou de développement.", "homepage": "", "is_draft": false, "costs": [ "Free to academics" ], "topics": [], "keywords": [ "Programming Languages & Computer Sciences", "FAIR", "Snakemake", "Docker" ], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Everyone", "accessConditions": "Academics", "maxParticipants": 14, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/563/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/124/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 79, "name": "IBMP", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IBMP/?format=api" }, { "id": 83, "name": "IGBMC", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IGBMC/?format=api" } ], "organisedByTeams": [ { "id": 14, "name": "BiGEst", "url": "https://catalogue.france-bioinformatique.fr/api/team/BiGEst/?format=api" } ], "logo_url": null, "updated_at": "2023-12-20T15:44:00.254606Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Bioinformaticians" ], "difficultyLevel": "", "trainingMaterials": [], "learningOutcomes": "A l'issue de cette formation, les participants pourront mettre en oeuvre les principes de la science reproductible : encapsuler un environnement de travail (Docker, Singularity), concevoir et exécuter des workflows (Snakemake), gérer des versions de code (Git), passer à l’échelle sur un cluster de calcul (Slurm), gérer des environnements logiciels (Conda) et assurer la traçabilité de leur analyse à l’aide de Notebooks (Jupyter).", "hoursPresentations": 10, "hoursHandsOn": 11, "hoursTotal": 21, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/568/?format=api" ] }, { "id": 377, "name": "RNASEQ ALIGNMENT, QUANTIFICATION AND TRANSCRIPT DISCOVERY WITH STATISTICS", "shortName": "RNASeq bioinfo / biostat", "description": "The Toulouse Genotoul bioinformatics platform, in collaboration with the Genotoul Biostatistics platform, and the MIAT unit, organize a 3,5 days long training course for bio-informaticians and biologists aiming at learning sequence analysis. It focuses on (protein coding) gene expression analysis using reads produced by ‘RNA-Seq’. This training session is designed to introduce sequences from ‘NGS’ (Next Generation Sequencing), particularly Illumina platforms (HiSeq). You will discover the standards file formats, learn about the usual biases of this type of data and run different kinds of analyses, such as spliced alignment on a reference genome, novel gene and transcript discovery, expression quantification of coding genes and transcripts. Finally you will be able to extract the differentially expressed genes.", "homepage": "https://bioinfo.genotoul.fr/index.php/events/rnaseq-alignment-transcripts-assemblies-statistics/", "is_draft": false, "costs": [ "Non-academic: 550€ + 20% taxes (TVA)", "Academic but non-INRAE: 170 € + 20% taxes (TVA)", "For INRAE's staff: 150 € no VAT charged;" ], "topics": [ "http://edamontology.org/topic_3308", "http://edamontology.org/topic_0203" ], "keywords": [ "NGS Data Analysis", "Expression" ], "prerequisites": [ "Langage R de base", "Linux/Unix", "Cluster" ], "openTo": "Everyone", "accessConditions": "Register on the training page : https://bioinfo.genotoul.fr/index.php/training-2/training/", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/642/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/739/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/300/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 15, "name": "MIAT", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT/?format=api" } ], "organisedByTeams": [ { "id": 33, "name": "Genotoul-biostat", "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-biostat/?format=api" }, { "id": 22, "name": "Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api" } ], "logo_url": "http://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png", "updated_at": "2025-12-01T11:55:30.468881Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Life scientists", "Biologists", "Bioinformaticians" ], "difficultyLevel": "Intermediate", "trainingMaterials": [ { "id": 135, "name": "training RNASEQ Bioinfo part", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/training%20RNASEQ%20Bioinfo%20part/?format=api" }, { "id": 136, "name": "training RNASeq biostat part", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/training%20RNASeq%20biostat%20part/?format=api" } ], "learningOutcomes": "", "hoursPresentations": null, "hoursHandsOn": null, "hoursTotal": 21, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/612/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/721/?format=api" ] }, { "id": 349, "name": "Reproducible Research", "shortName": "", "description": "The following topics and tools are covered in the course:\r\n\r\n Data management\r\n Project organisation\r\n Git\r\n Conda\r\n Snakemake\r\n Nextflow\r\n R Markdown\r\n Jupyter\r\n Docker\r\n Singularity\r\n\r\nAt the end of the course, students should be able to:\r\n\r\n Use good practices for data analysis and management\r\n Clearly organise their bioinformatic projects\r\n Use the version control system Git to track and collaborate on code\r\n Use the package and environment manager Conda\r\n Use and develop workflows with Snakemake and Nextflow\r\n Use R Markdown and Jupyter Notebooks to document and generate automated reports for their analyses\r\n Use Docker and Singularity to distribute containerized computational environments", "homepage": "https://southgreenplatform.github.io/training_reproducible_research/", "is_draft": false, "costs": [ "Free" ], "topics": [], "keywords": [], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Internal personnel", "accessConditions": "Open to South Green close collaborators", "maxParticipants": 20, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 24, "name": "South Green", "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api" } ], "logo_url": "https://southgreenplatform.github.io/trainings//images/southgreenlong.png", "updated_at": "2023-12-04T15:16:00.921744Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "At the end of the course, students should be able to:\r\n\r\n Use good practices for data analysis and management\r\n Clearly organise their bioinformatic projects\r\n Use the version control system Git to track and collaborate on code\r\n Use the package and environment manager Conda\r\n Use and develop workflows with Snakemake and Nextflow\r\n Use R Markdown and Jupyter Notebooks to document and generate automated reports for their analyses\r\n Use Docker and Singularity to distribute containerized computational environments", "hoursPresentations": 8, "hoursHandsOn": 13, "hoursTotal": 21, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/567/?format=api" ] }, { "id": 393, "name": "Pandas : gérer, analyser, visualiser vos données efficacement", "shortName": "", "description": "Les objectifs de cette formation sont :\r\n- Importer, exporter, gérer, analyser des données tabulaires\r\n- Calculer des données dérivées\r\n- Combiner et interroger des données complexes\r\n- Calculer des statistiques descriptives des données\r\n- Visualiser et synthétiser les données sous formes graphiques", "homepage": "https://cnrsformation.cnrs.fr/python-et-module-pandas-pour-gerer-et-analyser-donnees?mc=Pandas", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0091" ], "keywords": [ "Python Language" ], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Everyone", "accessConditions": "- Notions de base en informatique : fichiers, répertoire, organisation des données\r\n- Connaissance de base de la programmation en Python (activité régulière d'écriture de scripts en Python)\r\n- Maitrise d'un environnement de développement ou éditeur de programmes/scripts", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/528/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 6, "name": "CNRS formation entreprise", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20formation%20entreprise/?format=api" } ], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 7, "name": "ATGC", "url": "https://catalogue.france-bioinformatique.fr/api/team/ATGC/?format=api" } ], "logo_url": "http://www.atgc-montpellier.fr/pictures/ATGClogo.svg", "updated_at": "2025-02-11T08:32:41.454179Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [], "difficultyLevel": "", "trainingMaterials": [], "learningOutcomes": "Jour 1\r\nMatin :\r\n- Initiation Pandas, structures de données Series et DataFrame, chargement de données à partir de fichiers de données tabulaires\r\nAprès-midi :\r\n- Requêtes et outils de sélection\r\n\r\nJour 2\r\nMatin :\r\n- Fusion, concaténation, jointure de tables, regroupement de sous-ensembles\r\nAprès-midi :\r\n- Indexation simple et multiple, réindexation, export et sauvegarde\r\n\r\nJour 3\r\nMatin :\r\n- Visualisation et réalisation de graphiques\r\nAprès-midi :\r\n- Analyse de données des participants", "hoursPresentations": null, "hoursHandsOn": null, "hoursTotal": 21, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/702/?format=api" ] }, { "id": 291, "name": "Formation au logiciel R", "shortName": "Formation au logiciel R", "description": "Introduction au logiciel R et à son utilisation pour réaliser des graphiques et faire des analyses statistiques basiques en biologie. Introduction aux bibliothèques R utiles en biologie.", "homepage": "http://www.prabi.fr/spip.php?article273", "is_draft": false, "costs": [ "Priced" ], "topics": [], "keywords": [], "prerequisites": [], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 14, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 19, "name": "PRABI-AMSB", "url": "https://catalogue.france-bioinformatique.fr/api/team/PRABI-AMSB/?format=api" } ], "logo_url": null, "updated_at": "2022-06-02T11:50:50.812642Z", "audienceTypes": [ "Professional (initial)" ], "audienceRoles": [ "Life scientists" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "- Acquérir les compétences nécessaires à l’utilisation du logiciel R\r\n- Connaître les principales analyses statistiques nécessaires en biologie et les utiliser sous R\r\n- Réaliser des graphiques sous R\r\n- Connaitre les bibliothèques R utiles en Biologie", "hoursPresentations": 9, "hoursHandsOn": 12, "hoursTotal": 21, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/437/?format=api" ] }, { "id": 358, "name": "Traitement bioinformatique et analyse différentielle de données d’expression RNA-seq sous Galaxy", "shortName": "Analyse données RNA-seq sous Galaxy", "description": "Objectifs pédagogiques\r\nA l’issue de cette formation, vous serez capable, dans le cadre d’une analyse de données RNA- seq avec génome de référence et plan d’expérience simple :\r\n* de connaître le vocabulaire et les concepts bioinformatiques et biostatistiques ;\r\n* de savoir enchaîner de façon pertinente un ensemble d’outils bioinformatiques et biostatistiques dans l’environnement Galaxy ;\r\n* de comprendre le matériel et méthodes d’un article du domaine ;\r\n* d’évaluer la pertinence d’une analyse RNA-seq en identifiant les éléments clefs et comprendre les particularités liées à la nature des données.\r\n\r\nProgramme\r\nBioinformatique :\r\n* Obtenir des données de qualité : nettoyage, filtrage, qualité\r\n* Aligner les lectures sur un génome de référence\r\n* Détecter de nouveaux transcrits\r\n* Quantifier l’expression des gènes\r\n* Préparer et déployer unensemble d’analyses sur plusieurs échantillons\r\n\r\nBiostatistique :\r\n* Construire un plan d’expérience simple\r\n* Normaliser les données de comptage\r\n* Identifier les gènes différentiellements exprimés\r\n* Se sensibiliser aux tests multiples\r\n\r\nAnalyse de protocoles Bioinformatique et Biostatistiques issus de la littérature", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_3308", "http://edamontology.org/topic_0203", "http://edamontology.org/topic_0102", "http://edamontology.org/topic_3170" ], "keywords": [ "Gene expression differential analysis", "RNA-seq", "Transcriptomics" ], "prerequisites": [ "Galaxy - Basic usage" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2025-01-23T15:20:05.977558Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "A l’issue de cette formation, vous serez capable, dans le cadre d’une analyse de données RNA- seq avec génome de référence et plan d’expérience simple :\r\n\r\n* de connaître le vocabulaire et les concepts bioinformatiques et biostatistiques ;\r\n* de savoir enchaîner de façon pertinente un ensemble d’outils bioinformatiques et biostatistiques dans l’environnement Galaxy ;\r\n* de comprendre le matériel et méthodes d’un article du domaine ;\r\n* d’évaluer la pertinence d’une analyse RNA-seq en identifiant les éléments clefs et comprendre les particularités liées à la nature des données.", "hoursPresentations": 6, "hoursHandsOn": 12, "hoursTotal": 18, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/583/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/690/?format=api" ] }, { "id": 388, "name": "Analysis of shotgun metagenomic data", "shortName": "", "description": "This training session is organized by the Genotoul bioinfo platform. This course is dedicated to the analysis of prokaryotic shotgun metagenomic data from Illumina and Pacbio HiFi sequencing technology. \r\n\r\nAfter an overview of metagenomics and the biases and limitations of analyses, we will look at the main steps involved in analysing metagenomic data and launch independent tools on the genobioinfo cluster.\r\nLearners will then test a workflow to automate processing on a test dataset (metagWGS ).\r\nOn the third day, learners will choose which analysis strategy to start with according to their experimental design and launch the first stage of metagWGS on their own data.\r\nBy the end of the course, trainees will be familiar with the scope, advantages and limitations of shotgun sequencing data analysis and will have started the analysis on their own data.\r\n\r\ncalendar\r\n \r\n\r\nThis training is focused on practice. It consists of several modules with a large variety of exercises:\r\n\r\nFirst Day\r\nStart at 09:00 am\r\nTour de table\r\nIntroduction to metagenomics, Illumina and Pacbio data, analysis stages, analysis limits, etc.\r\nPresentation of some key tools for each stage\r\nPractical work on the main stages launched independently\r\nEnd at 17:00 pm\r\nSecond Day\r\nStart at 09:00 am\r\nIntroduction to the advantages and disadvantages of workflows and containers\r\nLaunch of the data cleansing stage\r\nLaunch of the rest of the workflow and analysis of the multiQC report\r\nEnd at 17:00 pm\r\nThird Day – BYOD\r\nStart at 09:00 am\r\nDefine the analysis strategy and launch the start of the analysis of your own data.\r\nEnd at 17:00 pm maximum", "homepage": "https://bioinfo.genotoul.fr/index.php/events/analysis-of-shotgun-metagenomic-data/", "is_draft": false, "costs": [ "Non-academic for non-academic: 1650€ + 20% taxes (TVA)", "Academic non-INRAE for academic but non-INRAE: 510 € + 20% taxes (TVA)", "INRAE for INRAE's staff: 450 € no VAT charged" ], "topics": [ "http://edamontology.org/topic_3174" ], "keywords": [ "NGS Data Analysis", "Metagenomics" ], "prerequisites": [ "Linux/Unix", "Cluster" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/300/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" }, { "id": 37, "name": "MIAT - Mathématiques et Informatique Appliquées de Toulouse", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT%20-%20Math%C3%A9matiques%20et%20Informatique%20Appliqu%C3%A9es%20de%20Toulouse/?format=api" } ], "organisedByTeams": [ { "id": 22, "name": "Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api" } ], "logo_url": "http://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png", "updated_at": "2025-12-01T11:55:10.179665Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Life scientists", "Biologists", "Bioinformaticians" ], "difficultyLevel": "Intermediate", "trainingMaterials": [ { "id": 151, "name": "Metagenomic training", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Metagenomic%20training/?format=api" } ], "learningOutcomes": "", "hoursPresentations": 3, "hoursHandsOn": 15, "hoursTotal": 18, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/670/?format=api" ] }, { "id": 375, "name": "RNASeq Analysis", "shortName": "RNASeq Analysis", "description": "Objectives\r\n- Understand the key steps in RNASeq data analysis for a differential expression study\r\n- Know how to perform command-line analysis using Snakemake.\r\n\r\nPedagogical Content\r\nDay 1\r\n- Principle of RNASeq technology: objectives and experimental design.\r\n- Data quality assessment (FastQC, MultiQC).\r\n- Sequence alignment to a reference genome (STAR).\r\n\r\nDay 2\r\n- Differential gene expression analysis (HTSeqCount, DESeq2).\r\n- Functional annotation (GO, Kegg).\r\n- Using the Snakemake workflow system.\r\n- Comparison between RNASeq and 3’SRP methods.\r\n\r\nThe theoretical part is followed by a pipeline run step-by-step on a test dataset. \r\nIt will be possible to start an analysis on your own data.", "homepage": "https://pf-bird.univ-nantes.fr/training/rnaseq/", "is_draft": false, "costs": [ "Priced" ], "topics": [], "keywords": [], "prerequisites": [], "openTo": "Everyone", "accessConditions": "Familiarity with basic Linux commands.", "maxParticipants": 12, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 16, "name": "BiRD", "url": "https://catalogue.france-bioinformatique.fr/api/team/BiRD/?format=api" } ], "logo_url": null, "updated_at": "2024-02-08T16:07:26.347245Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 7, "hoursHandsOn": 7, "hoursTotal": 14, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/603/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/640/?format=api" ] }, { "id": 313, "name": "RNA-Seq analysis", "shortName": "", "description": "Introduction to RNA-Seq analysis", "homepage": "https://southgreenplatform.github.io/trainings//rnaseq/", "is_draft": false, "costs": [ "Free" ], "topics": [], "keywords": [], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Internal personnel", "accessConditions": "Open to South Green close collaborators", "maxParticipants": 15, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 24, "name": "South Green", "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api" } ], "logo_url": "https://southgreenplatform.github.io/trainings//images/southgreenlong.png", "updated_at": "2023-12-04T15:04:39.023455Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Intermediate", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 6, "hoursHandsOn": 8, "hoursTotal": 14, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/473/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/471/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/563/?format=api" ] }, { "id": 250, "name": "Linux For Jedi", "shortName": "", "description": "This course offers to develop and enhance advanced Linux shell command line and scripting skills for the processing and analysis of NGS data. We will work on a HPC server and use linux powerful commands to allow to analyze big amount of biological data.", "homepage": "https://southgreenplatform.github.io/trainings/linuxJedi/", "is_draft": false, "costs": [ "Free" ], "topics": [], "keywords": [], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Internal personnel", "accessConditions": "Open to South Green close collaborators", "maxParticipants": 15, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 24, "name": "South Green", "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api" } ], "logo_url": "https://southgreenplatform.github.io/trainings//images/southgreenlong.png", "updated_at": "2022-06-02T11:50:50.812642Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Intermediate", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 4, "hoursHandsOn": 10, "hoursTotal": 14, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/469/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/382/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/560/?format=api" ] }, { "id": 380, "name": "INTRODUCTION TO PYTHON", "shortName": "Python", "description": "The Toulouse Genotoul bioinformatics platform, organizes a 2 days long training course for non computer scientist and biologists aiming at learning the foundation of Python programming. In this training you will learn the basics of programming (variables, functions, control structures such as “if” condition, “for” loop”), writing simple programs which read files, and write results to others. The training course does not require any knowledge in programming, but basic Linux/bash commands are required (cd, ls).\r\n\r\nThis training focuses on practice. It consists of modules with a large variety of exercises described hereunder (PROVISIONAL SCHEDULE):\r\n\r\nUsing a Jupyter notebook (Day 1).\r\nUsing variables (Day 1).\r\nBasic operations and functions (Day 1).\r\nReading a file, writing to a file (Day 1).\r\nCharacter string manipulation (Day 1).\r\nLists and dictionaries (Day 2).\r\nThe if and for controls (Day 2).\r\nBases of algorithms (Day 2).", "homepage": "https://bioinfo.genotoul.fr/index.php/events/python/", "is_draft": false, "costs": [], "topics": [ "http://edamontology.org/topic_3307" ], "keywords": [ "Python Language" ], "prerequisites": [ "Linux/Unix" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/642/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 15, "name": "MIAT", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT/?format=api" } ], "organisedByTeams": [ { "id": 22, "name": "Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api" } ], "logo_url": "http://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png", "updated_at": "2025-12-01T11:55:51.057828Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Life scientists" ], "difficultyLevel": "Novice", "trainingMaterials": [ { "id": 142, "name": "Introduction to python", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Introduction%20to%20python/?format=api" } ], "learningOutcomes": "", "hoursPresentations": 5, "hoursHandsOn": 9, "hoursTotal": 14, "personalised": false, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/635/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/718/?format=api" ] }, { "id": 357, "name": "Manipulation de données avec R, introduction à tidyverse", "shortName": "Introduction à tidyverse", "description": "Objectifs pédagogiques\r\nA l’issue de la formation, les stagiaires seront capables de :\r\n* utiliser les principales fonctions des packages dplyr et tidyr de l’écosystème du « tidyverse »\r\n* lire les données et les ranger dans un format « tidy »\r\n* manipuler les données : filtrer, sélectionner, trier, produire des résultats par groupe, fusionner plusieurs tables\r\n* mettre en forme et pivoter les tables de données\r\n\r\nProgramme\r\n* Principes du tidyverse\r\n* Principales fonctions de manipulation de données du package dplyr : ajouter de nouvelles variables, sélectionner des colonnes, filtrer des lignes, trier, grouper, fusionner des tables\r\n* Enchaînements des opérations à l’aide de « pipe »\r\n* Mise en forme, jointure et pivot de données avec le package tidyr\r\n* Mise en application sur un exemple d’analyse de données de transcriptomique.", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0605" ], "keywords": [ "R Language", "Tidyverse" ], "prerequisites": [ "Basic knowledge of R" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T13:15:41.633863Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Intermediate", "trainingMaterials": [], "learningOutcomes": "A l’issue de la formation, les stagiaires seront capables de :\r\n\r\nutiliser les principales fonctions des packages dplyr et tidyr de l’écosystème du « tidyverse »\r\nlire les données et les ranger dans un format « tidy »\r\nmanipuler les données : filtrer, sélectionner, trier, produire des résultats par groupe, fusionner plusieurs tables\r\nmettre en forme et pivoter les tables de données", "hoursPresentations": 2, "hoursHandsOn": 10, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/700/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/579/?format=api" ] }, { "id": 363, "name": "Introduction au text-mining avec AlvisNLP", "shortName": "Introduction to text-mining with AlvisNLP", "description": "Objectifs pédagogiques\r\nCette formation est dédiée à l’analyse de données textuelles (text-mining). L’objectif est l’acquisition des principales techniques pour la Reconnaissance d’Entités Nommées (REN) à partir de textes. Les entités nommées étudiées dans cette formation sont des objets ou concepts d’intérêts mentionnés dans les articles scientifiques ou les champs en texte libre (taxons, gènes, protéines, marques, etc.).\r\n\r\nLes participants vont acquérir les compétences pratiques nécessaires pour effectuer de façon autonome une première approche pour une application de text-mining. Le format est celui de Travaux Pratiques utilisant AlvisNLP, un outil pour la création de pipelines en text-mining développé par l’équipe Bibliome de l’unité MaIAGE. La formation s’adresse à des chercheurs et ingénieurs en (bio)-informatique ou en maths-info-stats appliquées\r\n\r\nProgramme\r\n* Présentation du text-mining et de la Reconnaissance des Entités Nommées (REN)\r\n* Travaux Pratiques sur des techniques de REN en utilisant AlvisNLP\r\n* Projection de lexiques\r\n* Application de patrons\r\n* Apprentissage automatique", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0605", "http://edamontology.org/topic_3474" ], "keywords": [ "Text mining" ], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T14:56:19.822106Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Life scientists", "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "Cette formation est dédiée à l’analyse de données textuelles (text-mining). L’objectif est l’acquisition des principales techniques pour la Reconnaissance d’Entités Nommées (REN) à partir de textes. Les entités nommées étudiées dans cette formation sont des objets ou concepts d’intérêts mentionnés dans les articles scientifiques ou les champs en texte libre (taxons, gènes, protéines, marques, etc.).\r\n\r\nLes participants vont acquérir les compétences pratiques nécessaires pour effectuer de façon autonome une première approche pour une application de text-mining. Le format est celui de Travaux Pratiques utilisant AlvisNLP, un outil pour la création de pipelines en text-mining développé par l’équipe Bibliome de l’unité MaIAGE. La formation s’adresse à des chercheurs et ingénieurs en (bio)-informatique ou en maths-info-stats appliquées", "hoursPresentations": 5, "hoursHandsOn": 7, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/588/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/680/?format=api" ] }, { "id": 287, "name": "Introduction to Oxford Nanopore Technology data analyses", "shortName": "Introduction to ONT data analyses", "description": "This course offers an introduction to ONT data analysis. It includes 5 issues: basecalling, reads quality control, assemblies and polishing/correction, contig quality and structural variants detection.", "homepage": "https://southgreenplatform.github.io/trainings//ont/", "is_draft": false, "costs": [ "Free" ], "topics": [ "http://edamontology.org/topic_3673", "http://edamontology.org/topic_0196", "http://edamontology.org/topic_3168" ], "keywords": [], "prerequisites": [ "Linux and knowledge of NGS formats" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 15, "contacts": [], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [], "organisedByTeams": [ { "id": 24, "name": "South Green", "url": "https://catalogue.france-bioinformatique.fr/api/team/South%20Green/?format=api" } ], "logo_url": "https://southgreenplatform.github.io/trainings//images/southgreenlong.png", "updated_at": "2023-01-24T10:21:58.467251Z", "audienceTypes": [ "Professional (initial)" ], "audienceRoles": [ "Life scientists", "Biologists" ], "difficultyLevel": "Novice", "trainingMaterials": [ { "id": 1, "name": "SG-ONT-slides", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/SG-ONT-slides/?format=api" } ], "learningOutcomes": "* Understanding limits and advantages of ONT technology\r\n* Manipulating ONT data on a virtual machine on jupyter environment\r\n* Handling mapping, assembly, polishing tools and be able to analyse your own data\r\n* Detecting structural variations using long reads", "hoursPresentations": 6, "hoursHandsOn": 6, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/441/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/450/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/562/?format=api" ] }, { "id": 353, "name": "Analyse de données métagénomiques shotgun / shotgun metagenomics", "shortName": "Shotgun metagenomics", "description": "Objectifs pédagogiques\r\n\r\nCette formation est dédiée à l’analyse de données métagénomiques procaryotes de type « shotgun » issues de la technologie de séquençage Illumina. Nous présenterons les étapes bioinformatiques nécessaires pour nettoyer les données brutes et les caractériser d’un point de vue taxonomique. Nous aborderons ensuite les différentes stratégies à employer pour assembler les reads et obtenir des comptages sur des gènes prédits. Enfin nous présenterons quelques outils pour obtenir une annotation fonctionnelle des échantillons. A l’issue des 2 jours de formation, les stagiaires connaîtront le périmètre, les avantages et limites des analyses de données de séquençage shotgun. Ils seront capables d’utiliser les outils présentés sur les jeux de données de la formation. L’ensemble des TP se déroulera sur l’infrastructure de Migale et nécessite une pratique courante de la ligne de commande.\r\n\r\nProgramme\r\n\r\nIntroduction générale sur les données métagénomiques\r\nAssignation taxonomique\r\nNettoyage des données brutes\r\nAssemblage / Binning\r\nPrédiction de gènes procaryotes\r\nAnnotation fonctionnelle\r\nConclusion, limites des méthodes", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_3697" ], "keywords": [ "Metagenomics" ], "prerequisites": [ "Linux/Unix", "Cluster" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T13:16:49.313752Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Intermediate", "trainingMaterials": [], "learningOutcomes": "Cette formation est dédiée à l’analyse de données métagénomiques procaryotes de type « shotgun » issues de la technologie de séquençage Illumina. Nous présenterons les étapes bioinformatiques nécessaires pour nettoyer les données brutes et les caractériser d’un point de vue taxonomique. Nous aborderons ensuite les différentes stratégies à employer pour assembler les reads et obtenir des comptages sur des gènes prédits. Enfin nous présenterons quelques outils pour obtenir une annotation fonctionnelle des échantillons. A l’issue des 2 jours de formation, les stagiaires connaîtront le périmètre, les avantages et limites des analyses de données de séquençage shotgun. Ils seront capables d’utiliser les outils présentés sur les jeux de données de la formation. L’ensemble des TP se déroulera sur l’infrastructure de Migale et nécessite une pratique courante de la ligne de commande.", "hoursPresentations": 5, "hoursHandsOn": 7, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/572/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/694/?format=api" ] }, { "id": 360, "name": "Modélisation in silico de structures 3D de protéines. Prédiction de mutations, de fixation de ligands", "shortName": "Modélisation de structures 3D de protéines", "description": "Objectifs pédagogiques\r\nA l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du logiciel PyMOL. Ils seront capables de les appliquer pour visualiser leur système biologique d’intérêt, et d’effectuer des commandes basiques d’identification de poches catalytiques, de profilage de surface électrostatique, et de mutations d’acides aminés.\r\n\r\nAussi, ils connaîtront les bases et les outils de bioinformatique structurale et seront autonomes pour effectuer des modèles de protéines par prédiction (Alphafold2), calculer les meilleures poses de fixation de leur(s) ligand(s) (Autodock4) et reconstruire l’éventuel assemblage biologique.\r\n\r\nBonus : Ils s’approprieront ces outils avec une demi-journée dédiée à la modélisation de leur système d’étude : protéines, interactions protéines/ADN, arrimage de ligand, etc.\r\n\r\nProgramme\r\nVisualiser :\r\n* Maîtriser les bases de la visualisation des protéines en 3D avec PyMOL.\r\nComprendre :\r\n* Analyser des structures 3D de protéines (RX ou RMN).\r\n* Identifier des homologues avec HHpred.\r\n* Modéliser par prédiction sa protéine d’intérêt avec Alphafold2.\r\nPrédire :\r\n* Savoir calculer des meilleures poses de ligands avec Autodock.\r\n* Prédir et modéliser les mutations in silico.\r\n\r\n- Points forts et limites des différents outils\r\n- ️“hand- on tutorials”\r\n- Plus une session dédiée : «bring your own protein»", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_1317" ], "keywords": [ "Protein structures", "2D/3D", "Protein/protein interaction modelisation" ], "prerequisites": [], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T14:36:41.185563Z", "audienceTypes": [ "Professional (initial)" ], "audienceRoles": [ "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "A l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du logiciel PyMOL. Ils seront capables de les appliquer pour visualiser leur système biologique d’intérêt, et d’effectuer des commandes basiques d’identification de poches catalytiques, de profilage de surface électrostatique, et de mutations d’acides aminés.\r\n\r\nAussi, ils connaîtront les bases et les outils de bioinformatique structurale et seront autonomes pour effectuer des modèles de protéines par prédiction (Alphafold2), calculer les meilleures poses de fixation de leur(s) ligand(s) (Autodock4) et reconstruire l’éventuel assemblage biologique.\r\n\r\nBonus : Ils s’approprieront ces outils avec une demi-journée dédiée à la modélisation de leur système d’étude : protéines, interactions protéines/ADN, arrimage de ligand, etc.", "hoursPresentations": 4, "hoursHandsOn": 8, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/585/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/699/?format=api" ] }, { "id": 356, "name": "Advanced Python", "shortName": "Advanced Python", "description": "Objectifs pédagogiques\r\n\r\nA l’issue de la formation, les stagiaires seront capables de :\r\n\r\nconnaître les éléments avancés du langage de programmation Python,\r\nles appliquer sur des cas concrets en bioinformatique,\r\nêtre autonome dans la mise en place de tâches complexes visant à extraire et re-formater des données issues de fichiers textes,\r\ndans le cadre de traitement de données via le langage de programmation Python\r\n\r\nProgramme\r\n\r\nFonctions\r\nExpressions régulières\r\nGestion des erreurs\r\nBiopython\r\nQuelques modules de bioinformatique\r\nRéalisation de programmes et de Notebooks Jupyter\r\nIllustration avec des exercices de manipulation de fichiers de séquences", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0605" ], "keywords": [ "Python Language" ], "prerequisites": [ "Python - basic knowledge" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T13:17:08.789820Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Advanced", "trainingMaterials": [], "learningOutcomes": "A l’issue de la formation, les stagiaires seront capables de :\r\n\r\nconnaître les éléments avancés du langage de programmation Python,\r\nles appliquer sur des cas concrets en bioinformatique,\r\nêtre autonome dans la mise en place de tâches complexes visant à extraire et re-formater des données issues de fichiers textes,\r\ndans le cadre de traitement de données via le langage de programmation Python", "hoursPresentations": 2, "hoursHandsOn": 10, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/575/?format=api" ] }, { "id": 362, "name": "Analyse statistique de données RNA-Seq - Recherche des régions d’intérêt différentiellement exprimées", "shortName": "Analyse statistique de données RNA-Seq", "description": "Objectifs pédagogiques\r\n* Se sensibiliser aux concepts et méthodes statistiques pour l’analyse de données transcriptomiques de type RNA-Seq.\r\n* Comprendre le matériel et méthodes (normalisation et tests statistiques) d’un article.\r\n* Réaliser une étude transcriptomique avec R dans l’environnement RStudio.\r\n\r\nProgramme\r\n* Planification expérimentale des expériences RNA-Seq (identification des biais, répétitions, biais contrôlables).\r\n* Normalisation et analyse différentielle : recherche de “régions d’intérêt” différentiellement exprimées (modèle linéaire généralisé).\r\n*Prise en compte de la multiplicité des tests.\r\n\r\nLe cours sera illustré par différents exemples. Un jeu de données à deux facteurs sera analysé avec les packages R DESeq2 et edgeR dans l’environnement RStudio.", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_3308", "http://edamontology.org/topic_0203", "http://edamontology.org/topic_3170" ], "keywords": [ "Statistical differential analysis", "RNA-seq" ], "prerequisites": [ "Basic knowledge of R" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T14:50:06.093352Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "Objectifs pédagogiques :\r\nSe sensibiliser aux concepts et méthodes statistiques pour l’analyse de données transcriptomiques de type RNA-Seq.\r\nComprendre le matériel et méthodes (normalisation et tests statistiques) d’un article.\r\nRéaliser une étude transcriptomique avec R dans l’environnement RStudio.", "hoursPresentations": 4, "hoursHandsOn": 8, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/587/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/695/?format=api" ] } ] }