Handles creating, reading and updating training events.

GET /api/training/?format=api&offset=60&ordering=-updated_at
HTTP 200 OK
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "count": 370,
    "next": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=80&ordering=-updated_at",
    "previous": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=40&ordering=-updated_at",
    "results": [
        {
            "id": 375,
            "name": "RNASeq Analysis",
            "shortName": "RNASeq Analysis",
            "description": "Objectives\r\n- Understand the key steps in RNASeq data analysis for a differential expression study\r\n- Know how to perform command-line analysis using Snakemake.\r\n\r\nPedagogical Content\r\nDay 1\r\n- Principle of RNASeq technology: objectives and experimental design.\r\n- Data quality assessment (FastQC, MultiQC).\r\n- Sequence alignment to a reference genome (STAR).\r\n\r\nDay 2\r\n- Differential gene expression analysis (HTSeqCount, DESeq2).\r\n- Functional annotation (GO, Kegg).\r\n- Using the Snakemake workflow system.\r\n- Comparison between RNASeq and 3’SRP methods.\r\n\r\nThe theoretical part is followed by a pipeline run step-by-step on a test dataset. \r\nIt will be possible to start an analysis on your own data.",
            "homepage": "https://pf-bird.univ-nantes.fr/training/rnaseq/",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [],
            "keywords": [],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "Familiarity with basic Linux commands.",
            "maxParticipants": 12,
            "contacts": [],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [],
            "organisedByTeams": [
                {
                    "id": 16,
                    "name": "BiRD",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/BiRD/?format=api"
                }
            ],
            "logo_url": null,
            "updated_at": "2024-02-08T16:07:26.347245Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": 7,
            "hoursHandsOn": 7,
            "hoursTotal": 14,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/603/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/640/?format=api"
            ]
        },
        {
            "id": 374,
            "name": "Environments and best practices for using the BiRD cluster",
            "shortName": "Best practices BiRD cluster",
            "description": "Objectives\r\n- Understand and implement the principles of reproducible science in analysis and development projects\r\n- Acquire basic commands necessary for optimal use of the cluster\r\n\r\nPedagogical Content\r\n- Introduction to reproducibility\r\n- Best practices on code history and sharing: Git\r\n- Conda environment\r\n- Presentation of the computing cluster\r\n- Introduction to workflows using Snakemake",
            "homepage": "https://pf-bird.univ-nantes.fr/training/cluster/",
            "is_draft": false,
            "costs": [
                "Free"
            ],
            "topics": [],
            "keywords": [],
            "prerequisites": [
                "Linux - Basic Knowledge"
            ],
            "openTo": "Everyone",
            "accessConditions": "Have an account on the BiRD cluster.",
            "maxParticipants": 20,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/596/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [],
            "organisedByTeams": [
                {
                    "id": 16,
                    "name": "BiRD",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/BiRD/?format=api"
                }
            ],
            "logo_url": null,
            "updated_at": "2024-02-08T15:56:16.390499Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": 7,
            "hoursHandsOn": null,
            "hoursTotal": 7,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/602/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/641/?format=api"
            ]
        },
        {
            "id": 288,
            "name": "Introduction to Linux",
            "shortName": "BirdLinux",
            "description": "Objectives\r\n- Understand the principles and advantages of the Linux system\r\n- Know and use the main bash commands. Ability to chain multiple commands using pipes\r\n- Launch programs with arguments\r\n- Gain independence to perform command line analyses\r\n\r\nPedagogical Content\r\n- Introduction to the Linux system.\r\n- File system: directory structure, paths, home directory, file and directory management.\r\n- Principle of protections: reading file attributes, access rights, management of user groups.\r\n- Shell usage: command reminders, input/output redirection, history, completion, launching programs with arguments.\r\n- Commands relevant to bioinformatics: grep, cut, sed, sort, more, etc.\r\n- Connection (ssh) - how to start a session from Linux or Windows PowerShell",
            "homepage": "https://pf-bird.univ-nantes.fr/training/",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/596/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [],
            "organisedByTeams": [
                {
                    "id": 16,
                    "name": "BiRD",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/BiRD/?format=api"
                }
            ],
            "logo_url": "https://pf-bird.univ-nantes.fr/medias/photo/small_1612545616928-png",
            "updated_at": "2024-02-08T15:29:55.120700Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Biologists",
                "All"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": 1,
            "hoursHandsOn": 6,
            "hoursTotal": 7,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/601/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/639/?format=api"
            ]
        },
        {
            "id": 373,
            "name": "Introduction à la segmentation des nucléoles et extraction de caractéristiques avec Galaxy",
            "shortName": "",
            "description": "L’objectif de cette formation est de se familiariser avec les premières étapes à l’analyse d’images. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main des ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à l’analyse d’images, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- télécharger des images depuis  un répertoire d’images publiques,- segmenter une image\r\n- extraire les caractéristiques des images",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_3383",
                "http://edamontology.org/topic_3382"
            ],
            "keywords": [
                "Galaxy"
            ],
            "prerequisites": [],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                },
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:28:41.024508Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 134,
                    "name": "Nucleoli segmentation and feature extraction using CellProfiler",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Nucleoli%20segmentation%20and%20feature%20extraction%20using%20CellProfiler/?format=api"
                }
            ],
            "learningOutcomes": "At the end, learners would be able to:\r\n- How to download images from a public image repository.\r\n- How to segment cell nuclei using CellProfiler in Galaxy.\r\n- How to segment cell nucleoli using CellProfiler in Galaxy.\r\n- How to extract features for images, nuclei and nucleoli.",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": []
        },
        {
            "id": 372,
            "name": "Introduction à l'analyse d’images avec Galaxy",
            "shortName": "",
            "description": "L’objectif de cette formation est de se familiariser avec les premières étapes à l’analyse d’images. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main des ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à l’analyse d’images, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- extraire des métadonnées d’une image,\r\n- convertir, filtrer et segmenter une image",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_3383",
                "http://edamontology.org/topic_3382"
            ],
            "keywords": [
                "Galaxy"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                },
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:25:36.663764Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 133,
                    "name": "Introduction to image analysis using Galaxy",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Introduction%20to%20image%20analysis%20using%20Galaxy/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- How to handle images in Galaxy.\r\n- How to perform basic image processing in Galaxy",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": []
        },
        {
            "id": 369,
            "name": "Introduction au profilage taxonomique et visualisation de communautés microbiennes à partir de données métagénomiques avec Galaxy",
            "shortName": "",
            "description": "L’objectif de cette formation est de se familiariser avec les étapes et les outils d’analyse de données de métagénomiques pour caractériser et visualiser des communautés microbiennes. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de ces étapes en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à la métagénomique, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- assigner des taxons à des données de métagénomiques,\r\n- visualiser une communauté microbienne à partir d’assignations taxonomiques",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_3697",
                "http://edamontology.org/topic_3174",
                "http://edamontology.org/topic_0637"
            ],
            "keywords": [
                "Galaxy"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                },
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:23:11.090144Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 130,
                    "name": "Taxonomic Profiling and Visualization of Metagenomic Data",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Taxonomic%20Profiling%20and%20Visualization%20of%20Metagenomic%20Data/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Explain what taxonomic assignment is\r\n- Explain how taxonomic assignment works\r\n- Apply Kraken and MetaPhlAn to assign taxonomic labels\r\n- Apply Krona and Pavian to visualize results of assignment and understand the output\r\n- Identify taxonomic classification tool that fits best depending on their data",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/599/?format=api"
            ]
        },
        {
            "id": 367,
            "name": "Introduction à l'analyse de données de séquençage avec contrôle qualité et alignement sur un génome de référence avec Galaxy",
            "shortName": "",
            "description": "L’objectif de cette formation est de se familiariser avec les premières étapes communes à toutes les analyses de données de séquençage : le contrôle qualité des données et l’alignement sur un génome de référence. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main des ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction aux données de séquençage, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- évaluer la qualité de données de séquençage,\r\n- améliorer la qualité de données de séquençage\r\n- aligner des données sur un génome de référence",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_0091",
                "http://edamontology.org/topic_0102"
            ],
            "keywords": [
                "Quality Control",
                "Galaxy",
                "Mapping"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                },
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:22:59.733596Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 128,
                    "name": "Mapping with Galaxy",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Mapping%20with%20Galaxy/?format=api"
                },
                {
                    "id": 127,
                    "name": "Quality Control with Galaxy",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Quality%20Control%20with%20Galaxy/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Assess short reads FASTQ quality using FASTQE 🧬😎 and FastQC\r\n- Assess long reads FASTQ quality using Nanoplot and PycoQC\r\n- Perform quality correction with Cutadapt (short reads)\r\n-  Summarise quality metrics MultiQC\r\n- Process single-end and paired-end data\r\n- Define what mapping is\r\n- Perform mapping of reads on a reference genome\r\n- Evaluate the mapping output",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/593/?format=api"
            ]
        },
        {
            "id": 368,
            "name": "Introduction à l'annotation de génomes bactériens avec Galaxy",
            "shortName": "",
            "description": "L’objectif est cette formation de se familiariser avec les étapes et les outils pour annoter des génomes bactériens. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de l’annotation de génomes bactériens en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à l’annotation de génomes bactériens, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- faire tourner une série d’outils pour annoter un génome bactérien avec différents éléments génomiques,\r\n- évaluer l’annotation\r\n- visualiser un génome bactérien et ses annotations",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_0622",
                "http://edamontology.org/topic_3301",
                "http://edamontology.org/topic_0219",
                "http://edamontology.org/topic_0097"
            ],
            "keywords": [
                "Bacterial isolate",
                "Galaxy",
                "Structural and functional annotation of genomes"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                },
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:22:51.682232Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 129,
                    "name": "Bacterial Genome Annotation",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Bacterial%20Genome%20Annotation/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Run a series of tools to annotate a draft bacterial genome for different types of genomic components\r\n- Evaluate the annotation\r\n- Process the outputs to format them for visualization needs\r\n- Visualize a draft bacterial genome and its annotations",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/598/?format=api"
            ]
        },
        {
            "id": 371,
            "name": "Introduction à l'analyse de données métatranscriptomiques avec Galaxy",
            "shortName": "",
            "description": "L’objectif de cette formation est de se familiariser avec les étapes et les outils d’analyse de données métatranscriptomiques dans le but de comprendre les fonctions d’une communauté microbienne. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de ces étapes  en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à la métatranscriptomique, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- assigner des taxons à des données de métatranscriptomiques,\r\n- extraire des informations fonctionnelles au sein de données de métatranscriptomiques,\r\n- combiner informations taxonomiques et fonctionnelles pour faciliter la compréhension des fonctions d’une communauté microbienne",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_3697",
                "http://edamontology.org/topic_0085",
                "http://edamontology.org/topic_3941",
                "http://edamontology.org/topic_1775"
            ],
            "keywords": [
                "Galaxy"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                },
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:22:23.706233Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 132,
                    "name": "Metatranscriptomics analysis using microbiome RNA-seq data",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Metatranscriptomics%20analysis%20using%20microbiome%20RNA-seq%20data/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Choose the best approach to analyze metatranscriptomics data\r\n- Understand the functional microbiome characterization using metatranscriptomic results\r\n- Understand where metatranscriptomics fits in ‘multi-omic’ analysis of microbiomes\r\n- Visualise a community structure",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": []
        },
        {
            "id": 370,
            "name": "Introduction à l'analyse de données de métabarcoding 16S avec Galaxy",
            "shortName": "",
            "description": "L’objectif de cette formation est de se familiariser avec les étapes et les outils pour analyses de données de métabarcoding 16S. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction au métabarcoding 16S, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- évaluer la qualité de données de métabarcoding ,\r\n- analyser et visualiser une communauté microbienne à partir de données de métabarcoding 16S",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_3697",
                "http://edamontology.org/topic_0637"
            ],
            "keywords": [
                "Galaxy",
                "Metabarcoding"
            ],
            "prerequisites": [],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                },
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T11:18:18.945136Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (initial)",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 131,
                    "name": "16S Microbial Analysis with mothur",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/16S%20Microbial%20Analysis%20with%20mothur/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Analyze of 16S rRNA sequencing data using the mothur toolsuite in Galaxy\r\n- Using a mock community to assess the error rate of your sequencing experiment\r\n- Visualize sample diversity using Krona and Phinch",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/595/?format=api"
            ]
        },
        {
            "id": 366,
            "name": "Initiation à l’utilisation de la plateforme de bio-analyse Galaxy",
            "shortName": "",
            "description": "L’objectif est de se familiariser avec l’interface utilisateur de Galaxy. \r\n\r\nAprès une introduction à Galaxy, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- Importer des données\r\n- Identifier des outils\r\n- Faire une analyse\r\n- Gérer un historique\r\n- Créer un workflow",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_0091"
            ],
            "keywords": [
                "Galaxy"
            ],
            "prerequisites": [],
            "openTo": "Internal personnel",
            "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 1,
                    "name": "CNRS - IFB",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api"
                },
                {
                    "id": 16,
                    "name": "Université Clermont Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 87,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api"
                },
                {
                    "id": 96,
                    "name": "Mésocentre Clermont-Auvergne",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 31,
                    "name": "AuBi",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api"
                }
            ],
            "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175",
            "updated_at": "2024-02-08T10:47:23.782242Z",
            "audienceTypes": [
                "Graduate",
                "Professional (initial)",
                "Professional (continued)",
                "Undergraduate"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [
                {
                    "id": 126,
                    "name": "Galaxy 101 for everyone",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Galaxy%20101%20for%20everyone/?format=api"
                }
            ],
            "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Assess short reads FASTQ quality using FASTQE 🧬😎 and FastQC\r\n- Assess long reads FASTQ quality using Nanoplot and PycoQC\r\n- Perform quality correction with Cutadapt (short reads)\r\n-  Summarise quality metrics MultiQC\r\n- Process single-end and paired-end data\r\n- Define what mapping is\r\n- Perform mapping of reads on a reference genome\r\n- Evaluate the mapping output",
            "hoursPresentations": 1,
            "hoursHandsOn": 2,
            "hoursTotal": 3,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/592/?format=api"
            ]
        },
        {
            "id": 290,
            "name": "NGS data analysis on the command line",
            "shortName": "NGS-analysis-cli",
            "description": "This hands-on course will teach bioinformatic approaches for analyzing Illumina sequencing data. Our goal is to introduce the command line skills you need to make the most of your NGS data. \r\nDuring this 4-day training we will first introduce the Linux environment, shell commands and basic R scripting.  And then we will focus on two NGS data analyses -- small RNA-seq and RNA-seq -- based on published datasets from the model organism Arabidopsis thaliana",
            "homepage": "https://www.ibmp.cnrs.fr/bioinformatics-trainings/",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_0102",
                "http://edamontology.org/topic_3170",
                "http://edamontology.org/topic_2269",
                "http://edamontology.org/topic_3168"
            ],
            "keywords": [],
            "prerequisites": [
                "none"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "This training is dedicated to academics working in a laboratory of Unistra/CNRS.",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/124/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 79,
                    "name": "UPR2357",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/UPR2357/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 14,
                    "name": "BiGEst",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/BiGEst/?format=api"
                }
            ],
            "logo_url": null,
            "updated_at": "2024-01-22T14:51:37.215331Z",
            "audienceTypes": [],
            "audienceRoles": [
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "Applied Knowledge (Know-how):\r\n- Basic proficiency at the Linux command line prompt\r\n- Basic proficiency of R (environment, objects, graphs) \r\n- Next generation sequencing (NGS) file formats; reference genomes - Mapping NGS read data to reference genomes (bowtie, samtools)\r\n- Small RNA-seq analysis; epigenomics applications (ShortStack)\r\n- RNA-seq for transcriptomics; differential gene expression analysis (HISAT2, DESeq2) - Data wrangling and visualization in R (Rstudio, ggplot2)",
            "hoursPresentations": 12,
            "hoursHandsOn": 16,
            "hoursTotal": 28,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/503/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/504/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/589/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/454/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/660/?format=api"
            ]
        },
        {
            "id": 363,
            "name": "Introduction au text-mining avec AlvisNLP",
            "shortName": "Introduction to text-mining with AlvisNLP",
            "description": "Objectifs pédagogiques\r\nCette formation est dédiée à l’analyse de données textuelles (text-mining). L’objectif est l’acquisition des principales techniques pour la Reconnaissance d’Entités Nommées (REN) à partir de textes. Les entités nommées étudiées dans cette formation sont des objets ou concepts d’intérêts mentionnés dans les articles scientifiques ou les champs en texte libre (taxons, gènes, protéines, marques, etc.).\r\n\r\nLes participants vont acquérir les compétences pratiques nécessaires pour effectuer de façon autonome une première approche pour une application de text-mining. Le format est celui de Travaux Pratiques utilisant AlvisNLP, un outil pour la création de pipelines en text-mining développé par l’équipe Bibliome de l’unité MaIAGE. La formation s’adresse à des chercheurs et ingénieurs en (bio)-informatique ou en maths-info-stats appliquées\r\n\r\nProgramme\r\n* Présentation du text-mining et de la Reconnaissance des Entités Nommées (REN)\r\n* Travaux Pratiques sur des techniques de REN en utilisant AlvisNLP\r\n* Projection de lexiques\r\n* Application de patrons\r\n* Apprentissage automatique",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605",
                "http://edamontology.org/topic_3474"
            ],
            "keywords": [
                "Text mining"
            ],
            "prerequisites": [
                "Linux - Basic Knowledge"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                },
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T14:56:19.822106Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Life scientists",
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "Cette formation est dédiée à l’analyse de données textuelles (text-mining). L’objectif est l’acquisition des principales techniques pour la Reconnaissance d’Entités Nommées (REN) à partir de textes. Les entités nommées étudiées dans cette formation sont des objets ou concepts d’intérêts mentionnés dans les articles scientifiques ou les champs en texte libre (taxons, gènes, protéines, marques, etc.).\r\n\r\nLes participants vont acquérir les compétences pratiques nécessaires pour effectuer de façon autonome une première approche pour une application de text-mining. Le format est celui de Travaux Pratiques utilisant AlvisNLP, un outil pour la création de pipelines en text-mining développé par l’équipe Bibliome de l’unité MaIAGE. La formation s’adresse à des chercheurs et ingénieurs en (bio)-informatique ou en maths-info-stats appliquées",
            "hoursPresentations": 5,
            "hoursHandsOn": 7,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/588/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/680/?format=api"
            ]
        },
        {
            "id": 362,
            "name": "Analyse statistique de données RNA-Seq - Recherche des régions d’intérêt différentiellement exprimées",
            "shortName": "Analyse statistique de données RNA-Seq",
            "description": "Objectifs pédagogiques\r\n* Se sensibiliser aux concepts et méthodes statistiques pour l’analyse de données transcriptomiques de type RNA-Seq.\r\n* Comprendre le matériel et méthodes (normalisation et tests statistiques) d’un article.\r\n* Réaliser une étude transcriptomique avec R dans l’environnement RStudio.\r\n\r\nProgramme\r\n* Planification expérimentale des expériences RNA-Seq (identification des biais, répétitions, biais contrôlables).\r\n* Normalisation et analyse différentielle : recherche de “régions d’intérêt” différentiellement exprimées (modèle linéaire généralisé).\r\n*Prise en compte de la multiplicité des tests.\r\n\r\nLe cours sera illustré par différents exemples. Un jeu de données à deux facteurs sera analysé avec les packages R DESeq2 et edgeR dans l’environnement RStudio.",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_3308",
                "http://edamontology.org/topic_0203",
                "http://edamontology.org/topic_3170"
            ],
            "keywords": [
                "Statistical differential analysis",
                "RNA-seq"
            ],
            "prerequisites": [
                "Basic knowledge of R"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                },
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T14:50:06.093352Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "Objectifs pédagogiques :\r\nSe sensibiliser aux concepts et méthodes statistiques pour l’analyse de données transcriptomiques de type RNA-Seq.\r\nComprendre le matériel et méthodes (normalisation et tests statistiques) d’un article.\r\nRéaliser une étude transcriptomique avec R dans l’environnement RStudio.",
            "hoursPresentations": 4,
            "hoursHandsOn": 8,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/587/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/695/?format=api"
            ]
        },
        {
            "id": 361,
            "name": "Initiation à Linux / Introduction to Linux",
            "shortName": "Initiation à Linux",
            "description": "Objectifs pédagogiques\r\nÀ l'issue de la formation, les stagiaires connaîtront les principales commandes Linux et sauront utiliser le système Linux.\r\n\r\nProgramme\r\n* Connexion (ssh) et transferts de fichiers (scp, rsync)\r\n* Interfaces graphiques (Gnome, KDE) / émulateurs\r\n* Aide en ligne\r\n* Utilisation du shell : le rappel des commandes, l’historique, la complétion\r\n* Système de fichiers : arborescence et chemin d’accès, le répertoire d’accueil…\r\n* Gestion des fichiers et des répertoires\r\n* Principe de protection : les attributs sur les fichiers, les droits d’accès",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [
                "Linux"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                },
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T14:43:04.391836Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Biologists"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "À l'issue de la formation, les stagiaires connaîtront les principales commandes Linux et sauront utiliser le système Linux.",
            "hoursPresentations": 1,
            "hoursHandsOn": 5,
            "hoursTotal": 6,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/586/?format=api"
            ]
        },
        {
            "id": 360,
            "name": "Modélisation in silico de structures 3D de protéines. Prédiction de mutations, de fixation de ligands",
            "shortName": "Modélisation de structures 3D de protéines",
            "description": "Objectifs pédagogiques\r\nA l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du logiciel PyMOL. Ils seront capables de les appliquer pour visualiser leur système biologique d’intérêt, et d’effectuer des commandes basiques d’identification de poches catalytiques, de profilage de surface électrostatique, et de mutations d’acides aminés.\r\n\r\nAussi, ils connaîtront les bases et les outils de bioinformatique structurale et seront autonomes pour effectuer des modèles de protéines par prédiction (Alphafold2), calculer les meilleures poses de fixation de leur(s) ligand(s) (Autodock4) et reconstruire l’éventuel assemblage biologique.\r\n\r\nBonus : Ils s’approprieront ces outils avec une demi-journée dédiée à la modélisation de leur système d’étude : protéines, interactions protéines/ADN, arrimage de ligand, etc.\r\n\r\nProgramme\r\nVisualiser :\r\n* Maîtriser les bases de la visualisation des protéines en 3D avec PyMOL.\r\nComprendre :\r\n* Analyser des structures 3D de protéines (RX ou RMN).\r\n* Identifier des homologues avec HHpred.\r\n* Modéliser par prédiction sa protéine d’intérêt avec Alphafold2.\r\nPrédire :\r\n* Savoir calculer des meilleures poses de ligands avec Autodock.\r\n* Prédir et modéliser les mutations in silico.\r\n\r\n- Points forts et limites des différents outils\r\n- ️“hand- on tutorials”\r\n- Plus une session dédiée : «bring your own protein»",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_1317"
            ],
            "keywords": [
                "Protein structures",
                "2D/3D",
                "Protein/protein interaction modelisation"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                },
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                }
            ],
            "organisedByTeams": [],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T14:36:41.185563Z",
            "audienceTypes": [
                "Professional (initial)"
            ],
            "audienceRoles": [
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "A l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du logiciel PyMOL. Ils seront capables de les appliquer pour visualiser leur système biologique d’intérêt, et d’effectuer des commandes basiques d’identification de poches catalytiques, de profilage de surface électrostatique, et de mutations d’acides aminés.\r\n\r\nAussi, ils connaîtront les bases et les outils de bioinformatique structurale et seront autonomes pour effectuer des modèles de protéines par prédiction (Alphafold2), calculer les meilleures poses de fixation de leur(s) ligand(s) (Autodock4) et reconstruire l’éventuel assemblage biologique.\r\n\r\nBonus : Ils s’approprieront ces outils avec une demi-journée dédiée à la modélisation de leur système d’étude : protéines, interactions protéines/ADN, arrimage de ligand, etc.",
            "hoursPresentations": 4,
            "hoursHandsOn": 8,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/585/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/699/?format=api"
            ]
        },
        {
            "id": 359,
            "name": "Comparaison de génomes microbiens",
            "shortName": "Comparaison de génomes microbiens",
            "description": "Objectifs pédagogiques\r\nConnaître les concepts et les principales méthodes bioinformatiques pour comparer un jeu de données de génomes microbiens. Construire et évaluer la qualité d’un jeu de données. Savoir mettre en œuvre une comparaison de génomes et en interpréter les résultats.\r\n\r\nProgramme\r\n* Construction d’un jeu de données :\r\n* Téléchargement de données publiques\r\n* Evaluation de la qualité\r\n* Caractérisation de la diversité génomique\r\n* Stratégies de comparaison :\r\n* Construction de famille de protéines\r\n* Alignement de génomes complets\r\n* Analyse des résultats :\r\n   o Notion de core et pan-génome\r\n   o Notions élémentaires de phylogénomique\r\n   o Visualisation et interprétation des résultats\r\n* Mise en pratique sur un jeu de données bactériens, utilisation des logiciels dRep et Roary sous Galaxy.",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0622",
                "http://edamontology.org/topic_3299"
            ],
            "keywords": [
                "Comparative genomics"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                },
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T14:13:49.810934Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "Connaître les concepts et les principales méthodes bioinformatiques pour comparer un jeu de données de génomes microbiens. \r\nConstruire et évaluer la qualité d’un jeu de données. \r\nSavoir mettre en œuvre une comparaison de génomes et en interpréter les résultats.",
            "hoursPresentations": 3,
            "hoursHandsOn": 3,
            "hoursTotal": 6,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/698/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/584/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/696/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/697/?format=api"
            ]
        },
        {
            "id": 284,
            "name": "Analyse primaire de données issues de séquenceurs nouvelle génération sous Galaxy",
            "shortName": "Analyse de données NGS sous Galaxy",
            "description": "Objectifs pédagogiques\r\nConnaître les concepts et méthodes bioinformatiques utilisés pour l’analyse primaire de données issues de séquenceurs nouvelle génération (NGS). Savoir effectuer un alignement sur un génome de référence, un assemblage de novo d’un génome bactérien\r\n\r\nProgramme\r\nThéorie\r\n* Présentation des différents types de technologies de séquençage (lectures longues et courtes)\r\n\r\nPratique : Analyse des données de séquençage d’un génome bactérien\r\n* Contrôle qualité\r\n* Assemblage de-novo\r\n* Nettoyage des données\r\n* Assemblage\r\n* Visualisation et statistiques sur l’assemblage\r\n* Alignement de lectures sur un génome de référence et visualisation\r\nTous les TPs seront réalisés sous l’environnement d’exécution de traitements Galaxy.",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0092",
                "http://edamontology.org/topic_0102",
                "http://edamontology.org/topic_0196",
                "http://edamontology.org/topic_3168"
            ],
            "keywords": [
                "Galaxy",
                "NGS"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                },
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T13:51:11.796060Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "All"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "Connaître les concepts et méthodes bioinformatiques utilisés pour l’analyse primaire de données issues de séquenceurs nouvelle génération (NGS). Savoir effectuer un alignement sur un génome de référence, un assemblage de novo d’un génome bactérien",
            "hoursPresentations": 3,
            "hoursHandsOn": 3,
            "hoursTotal": 6,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/582/?format=api"
            ]
        },
        {
            "id": 356,
            "name": "Advanced Python",
            "shortName": "Advanced Python",
            "description": "Objectifs pédagogiques\r\n\r\nA l’issue de la formation, les stagiaires seront capables de :\r\n\r\nconnaître les éléments avancés du langage de programmation Python,\r\nles appliquer sur des cas concrets en bioinformatique,\r\nêtre autonome dans la mise en place de tâches complexes visant à extraire et re-formater des données issues de fichiers textes,\r\ndans le cadre de traitement de données via le langage de programmation Python\r\n\r\nProgramme\r\n\r\nFonctions\r\nExpressions régulières\r\nGestion des erreurs\r\nBiopython\r\nQuelques modules de bioinformatique\r\nRéalisation de programmes et de Notebooks Jupyter\r\nIllustration avec des exercices de manipulation de fichiers de séquences",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [
                "Python Language"
            ],
            "prerequisites": [
                "Python - basic knowledge"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                },
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T13:17:08.789820Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Advanced",
            "trainingMaterials": [],
            "learningOutcomes": "A l’issue de la formation, les stagiaires seront capables de :\r\n\r\nconnaître les éléments avancés du langage de programmation Python,\r\nles appliquer sur des cas concrets en bioinformatique,\r\nêtre autonome dans la mise en place de tâches complexes visant à extraire et re-formater des données issues de fichiers textes,\r\ndans le cadre de traitement de données via le langage de programmation Python",
            "hoursPresentations": 2,
            "hoursHandsOn": 10,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/575/?format=api"
            ]
        },
        {
            "id": 353,
            "name": "Analyse de données métagénomiques shotgun / shotgun metagenomics",
            "shortName": "Shotgun metagenomics",
            "description": "Objectifs pédagogiques\r\n\r\nCette formation est dédiée à l’analyse de données métagénomiques procaryotes de type « shotgun » issues de la technologie de séquençage Illumina. Nous présenterons les étapes bioinformatiques nécessaires pour nettoyer les données brutes et les caractériser d’un point de vue taxonomique. Nous aborderons ensuite les différentes stratégies à employer pour assembler les reads et obtenir des comptages sur des gènes prédits. Enfin nous présenterons quelques outils pour obtenir une annotation fonctionnelle des échantillons. A l’issue des 2 jours de formation, les stagiaires connaîtront le périmètre, les avantages et limites des analyses de données de séquençage shotgun. Ils seront capables d’utiliser les outils présentés sur les jeux de données de la formation. L’ensemble des TP se déroulera sur l’infrastructure de Migale et nécessite une pratique courante de la ligne de commande.\r\n\r\nProgramme\r\n\r\nIntroduction générale sur les données métagénomiques\r\nAssignation taxonomique\r\nNettoyage des données brutes\r\nAssemblage / Binning\r\nPrédiction de gènes procaryotes\r\nAnnotation fonctionnelle\r\nConclusion, limites des méthodes",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_3697"
            ],
            "keywords": [
                "Metagenomics"
            ],
            "prerequisites": [
                "Linux/Unix",
                "Cluster"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                },
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T13:16:49.313752Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [],
            "learningOutcomes": "Cette formation est dédiée à l’analyse de données métagénomiques procaryotes de type « shotgun » issues de la technologie de séquençage Illumina. Nous présenterons les étapes bioinformatiques nécessaires pour nettoyer les données brutes et les caractériser d’un point de vue taxonomique. Nous aborderons ensuite les différentes stratégies à employer pour assembler les reads et obtenir des comptages sur des gènes prédits. Enfin nous présenterons quelques outils pour obtenir une annotation fonctionnelle des échantillons. A l’issue des 2 jours de formation, les stagiaires connaîtront le périmètre, les avantages et limites des analyses de données de séquençage shotgun. Ils seront capables d’utiliser les outils présentés sur les jeux de données de la formation. L’ensemble des TP se déroulera sur l’infrastructure de Migale et nécessite une pratique courante de la ligne de commande.",
            "hoursPresentations": 5,
            "hoursHandsOn": 7,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/572/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/694/?format=api"
            ]
        }
    ]
}