Training List
Handles creating, reading and updating training events.
GET /api/training/?format=api&offset=300&ordering=-organisedByOrganisations
{ "count": 378, "next": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=320&ordering=-organisedByOrganisations", "previous": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=280&ordering=-organisedByOrganisations", "results": [ { "id": 358, "name": "Traitement bioinformatique et analyse différentielle de données d’expression RNA-seq sous Galaxy", "shortName": "Analyse données RNA-seq sous Galaxy", "description": "Objectifs pédagogiques\r\nA l’issue de cette formation, vous serez capable, dans le cadre d’une analyse de données RNA- seq avec génome de référence et plan d’expérience simple :\r\n* de connaître le vocabulaire et les concepts bioinformatiques et biostatistiques ;\r\n* de savoir enchaîner de façon pertinente un ensemble d’outils bioinformatiques et biostatistiques dans l’environnement Galaxy ;\r\n* de comprendre le matériel et méthodes d’un article du domaine ;\r\n* d’évaluer la pertinence d’une analyse RNA-seq en identifiant les éléments clefs et comprendre les particularités liées à la nature des données.\r\n\r\nProgramme\r\nBioinformatique :\r\n* Obtenir des données de qualité : nettoyage, filtrage, qualité\r\n* Aligner les lectures sur un génome de référence\r\n* Détecter de nouveaux transcrits\r\n* Quantifier l’expression des gènes\r\n* Préparer et déployer unensemble d’analyses sur plusieurs échantillons\r\n\r\nBiostatistique :\r\n* Construire un plan d’expérience simple\r\n* Normaliser les données de comptage\r\n* Identifier les gènes différentiellements exprimés\r\n* Se sensibiliser aux tests multiples\r\n\r\nAnalyse de protocoles Bioinformatique et Biostatistiques issus de la littérature", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_3308", "http://edamontology.org/topic_0203", "http://edamontology.org/topic_0102", "http://edamontology.org/topic_3170" ], "keywords": [ "Gene expression differential analysis", "RNA-seq", "Transcriptomics" ], "prerequisites": [ "Galaxy - Basic usage" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2025-01-23T15:20:05.977558Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "A l’issue de cette formation, vous serez capable, dans le cadre d’une analyse de données RNA- seq avec génome de référence et plan d’expérience simple :\r\n\r\n* de connaître le vocabulaire et les concepts bioinformatiques et biostatistiques ;\r\n* de savoir enchaîner de façon pertinente un ensemble d’outils bioinformatiques et biostatistiques dans l’environnement Galaxy ;\r\n* de comprendre le matériel et méthodes d’un article du domaine ;\r\n* d’évaluer la pertinence d’une analyse RNA-seq en identifiant les éléments clefs et comprendre les particularités liées à la nature des données.", "hoursPresentations": 6, "hoursHandsOn": 12, "hoursTotal": 18, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/583/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/690/?format=api" ] }, { "id": 362, "name": "Analyse statistique de données RNA-Seq - Recherche des régions d’intérêt différentiellement exprimées", "shortName": "Analyse statistique de données RNA-Seq", "description": "Objectifs pédagogiques\r\n* Se sensibiliser aux concepts et méthodes statistiques pour l’analyse de données transcriptomiques de type RNA-Seq.\r\n* Comprendre le matériel et méthodes (normalisation et tests statistiques) d’un article.\r\n* Réaliser une étude transcriptomique avec R dans l’environnement RStudio.\r\n\r\nProgramme\r\n* Planification expérimentale des expériences RNA-Seq (identification des biais, répétitions, biais contrôlables).\r\n* Normalisation et analyse différentielle : recherche de “régions d’intérêt” différentiellement exprimées (modèle linéaire généralisé).\r\n*Prise en compte de la multiplicité des tests.\r\n\r\nLe cours sera illustré par différents exemples. Un jeu de données à deux facteurs sera analysé avec les packages R DESeq2 et edgeR dans l’environnement RStudio.", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_3308", "http://edamontology.org/topic_0203", "http://edamontology.org/topic_3170" ], "keywords": [ "Statistical differential analysis", "RNA-seq" ], "prerequisites": [ "Basic knowledge of R" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T14:50:06.093352Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "Objectifs pédagogiques :\r\nSe sensibiliser aux concepts et méthodes statistiques pour l’analyse de données transcriptomiques de type RNA-Seq.\r\nComprendre le matériel et méthodes (normalisation et tests statistiques) d’un article.\r\nRéaliser une étude transcriptomique avec R dans l’environnement RStudio.", "hoursPresentations": 4, "hoursHandsOn": 8, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/587/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/695/?format=api" ] }, { "id": 360, "name": "Modélisation in silico de structures 3D de protéines. Prédiction de mutations, de fixation de ligands", "shortName": "Modélisation de structures 3D de protéines", "description": "Objectifs pédagogiques\r\nA l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du logiciel PyMOL. Ils seront capables de les appliquer pour visualiser leur système biologique d’intérêt, et d’effectuer des commandes basiques d’identification de poches catalytiques, de profilage de surface électrostatique, et de mutations d’acides aminés.\r\n\r\nAussi, ils connaîtront les bases et les outils de bioinformatique structurale et seront autonomes pour effectuer des modèles de protéines par prédiction (Alphafold2), calculer les meilleures poses de fixation de leur(s) ligand(s) (Autodock4) et reconstruire l’éventuel assemblage biologique.\r\n\r\nBonus : Ils s’approprieront ces outils avec une demi-journée dédiée à la modélisation de leur système d’étude : protéines, interactions protéines/ADN, arrimage de ligand, etc.\r\n\r\nProgramme\r\nVisualiser :\r\n* Maîtriser les bases de la visualisation des protéines en 3D avec PyMOL.\r\nComprendre :\r\n* Analyser des structures 3D de protéines (RX ou RMN).\r\n* Identifier des homologues avec HHpred.\r\n* Modéliser par prédiction sa protéine d’intérêt avec Alphafold2.\r\nPrédire :\r\n* Savoir calculer des meilleures poses de ligands avec Autodock.\r\n* Prédir et modéliser les mutations in silico.\r\n\r\n- Points forts et limites des différents outils\r\n- ️“hand- on tutorials”\r\n- Plus une session dédiée : «bring your own protein»", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_1317" ], "keywords": [ "Protein structures", "2D/3D", "Protein/protein interaction modelisation" ], "prerequisites": [], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T14:36:41.185563Z", "audienceTypes": [ "Professional (initial)" ], "audienceRoles": [ "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "A l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du logiciel PyMOL. Ils seront capables de les appliquer pour visualiser leur système biologique d’intérêt, et d’effectuer des commandes basiques d’identification de poches catalytiques, de profilage de surface électrostatique, et de mutations d’acides aminés.\r\n\r\nAussi, ils connaîtront les bases et les outils de bioinformatique structurale et seront autonomes pour effectuer des modèles de protéines par prédiction (Alphafold2), calculer les meilleures poses de fixation de leur(s) ligand(s) (Autodock4) et reconstruire l’éventuel assemblage biologique.\r\n\r\nBonus : Ils s’approprieront ces outils avec une demi-journée dédiée à la modélisation de leur système d’étude : protéines, interactions protéines/ADN, arrimage de ligand, etc.", "hoursPresentations": 4, "hoursHandsOn": 8, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/585/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/699/?format=api" ] }, { "id": 359, "name": "Comparaison de génomes microbiens", "shortName": "Comparaison de génomes microbiens", "description": "Objectifs pédagogiques\r\nConnaître les concepts et les principales méthodes bioinformatiques pour comparer un jeu de données de génomes microbiens. Construire et évaluer la qualité d’un jeu de données. Savoir mettre en œuvre une comparaison de génomes et en interpréter les résultats.\r\n\r\nProgramme\r\n* Construction d’un jeu de données :\r\n* Téléchargement de données publiques\r\n* Evaluation de la qualité\r\n* Caractérisation de la diversité génomique\r\n* Stratégies de comparaison :\r\n* Construction de famille de protéines\r\n* Alignement de génomes complets\r\n* Analyse des résultats :\r\n o Notion de core et pan-génome\r\n o Notions élémentaires de phylogénomique\r\n o Visualisation et interprétation des résultats\r\n* Mise en pratique sur un jeu de données bactériens, utilisation des logiciels dRep et Roary sous Galaxy.", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0622", "http://edamontology.org/topic_3299" ], "keywords": [ "Comparative genomics" ], "prerequisites": [], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T14:13:49.810934Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "Connaître les concepts et les principales méthodes bioinformatiques pour comparer un jeu de données de génomes microbiens. \r\nConstruire et évaluer la qualité d’un jeu de données. \r\nSavoir mettre en œuvre une comparaison de génomes et en interpréter les résultats.", "hoursPresentations": 3, "hoursHandsOn": 3, "hoursTotal": 6, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/698/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/584/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/696/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/697/?format=api" ] }, { "id": 345, "name": "Graphiques sous R avec ggplot2 / Graphics with R-ggplot2", "shortName": "ggplot2", "description": "Objectifs pédagogiques :\r\nÀ l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du package R « ggplot2 » et la démarche sous-jacente pour construire un graphique à partir d’un tableau de données. Ils seront capables de réaliser plusieurs types de représentations graphiques, telles que des nuages de points, des courbes, des histogrammes, des diagrammes en bâtons, des boxplots, des heatmaps, etc. Les stagiaires pourront apporter leur propre tableau de données et pratiquer dessus en fin de formation. \r\n\r\nProgramme :\r\n- Principes généraux liés au package ggplot2 \r\n- Principales fonctions graphiques pour réaliser des nuages de points, des histogrammes, des boxplots, etc. \r\n- Principales fonctions pour jouer sur les coloriages en fonction d’une variable, sur les échelles de couleurs, sur les graduations, sur les représentations multiples, etc.", "homepage": "https://migale.inrae.fr/trainings", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0091", "http://edamontology.org/topic_0605", "http://edamontology.org/topic_2269" ], "keywords": [ "Représentations graphiques" ], "prerequisites": [ "Langage R de base" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T12:50:47.605879Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Intermediate", "trainingMaterials": [], "learningOutcomes": "À l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du package R « ggplot2 » et la démarche sous-jacente pour construire un graphique à partir d’un tableau de données. Ils seront capables de réaliser plusieurs types de représentations graphiques, telles que des nuages de points, des courbes, des histogrammes, des diagrammes en bâtons, des boxplots, des heatmaps, etc.", "hoursPresentations": 1, "hoursHandsOn": 5, "hoursTotal": 6, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/554/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/569/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/683/?format=api" ] }, { "id": 363, "name": "Introduction au text-mining avec AlvisNLP", "shortName": "Introduction to text-mining with AlvisNLP", "description": "Objectifs pédagogiques\r\nCette formation est dédiée à l’analyse de données textuelles (text-mining). L’objectif est l’acquisition des principales techniques pour la Reconnaissance d’Entités Nommées (REN) à partir de textes. Les entités nommées étudiées dans cette formation sont des objets ou concepts d’intérêts mentionnés dans les articles scientifiques ou les champs en texte libre (taxons, gènes, protéines, marques, etc.).\r\n\r\nLes participants vont acquérir les compétences pratiques nécessaires pour effectuer de façon autonome une première approche pour une application de text-mining. Le format est celui de Travaux Pratiques utilisant AlvisNLP, un outil pour la création de pipelines en text-mining développé par l’équipe Bibliome de l’unité MaIAGE. La formation s’adresse à des chercheurs et ingénieurs en (bio)-informatique ou en maths-info-stats appliquées\r\n\r\nProgramme\r\n* Présentation du text-mining et de la Reconnaissance des Entités Nommées (REN)\r\n* Travaux Pratiques sur des techniques de REN en utilisant AlvisNLP\r\n* Projection de lexiques\r\n* Application de patrons\r\n* Apprentissage automatique", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0605", "http://edamontology.org/topic_3474" ], "keywords": [ "Text mining" ], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T14:56:19.822106Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Life scientists", "Biologists", "Bioinformaticians" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "Cette formation est dédiée à l’analyse de données textuelles (text-mining). L’objectif est l’acquisition des principales techniques pour la Reconnaissance d’Entités Nommées (REN) à partir de textes. Les entités nommées étudiées dans cette formation sont des objets ou concepts d’intérêts mentionnés dans les articles scientifiques ou les champs en texte libre (taxons, gènes, protéines, marques, etc.).\r\n\r\nLes participants vont acquérir les compétences pratiques nécessaires pour effectuer de façon autonome une première approche pour une application de text-mining. Le format est celui de Travaux Pratiques utilisant AlvisNLP, un outil pour la création de pipelines en text-mining développé par l’équipe Bibliome de l’unité MaIAGE. La formation s’adresse à des chercheurs et ingénieurs en (bio)-informatique ou en maths-info-stats appliquées", "hoursPresentations": 5, "hoursHandsOn": 7, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/588/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/680/?format=api" ] }, { "id": 284, "name": "Analyse primaire de données issues de séquenceurs nouvelle génération sous Galaxy", "shortName": "Analyse de données NGS sous Galaxy", "description": "Objectifs pédagogiques\r\nConnaître les concepts et méthodes bioinformatiques utilisés pour l’analyse primaire de données issues de séquenceurs nouvelle génération (NGS). Savoir effectuer un alignement sur un génome de référence, un assemblage de novo d’un génome bactérien\r\n\r\nProgramme\r\nThéorie\r\n* Présentation des différents types de technologies de séquençage (lectures longues et courtes)\r\n\r\nPratique : Analyse des données de séquençage d’un génome bactérien\r\n* Contrôle qualité\r\n* Assemblage de-novo\r\n* Nettoyage des données\r\n* Assemblage\r\n* Visualisation et statistiques sur l’assemblage\r\n* Alignement de lectures sur un génome de référence et visualisation\r\nTous les TPs seront réalisés sous l’environnement d’exécution de traitements Galaxy.", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0092", "http://edamontology.org/topic_0102", "http://edamontology.org/topic_0196", "http://edamontology.org/topic_3168" ], "keywords": [ "Galaxy", "NGS" ], "prerequisites": [ "Galaxy - Basic usage" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T13:51:11.796060Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "All" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "Connaître les concepts et méthodes bioinformatiques utilisés pour l’analyse primaire de données issues de séquenceurs nouvelle génération (NGS). Savoir effectuer un alignement sur un génome de référence, un assemblage de novo d’un génome bactérien", "hoursPresentations": 3, "hoursHandsOn": 3, "hoursTotal": 6, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/582/?format=api" ] }, { "id": 392, "name": "Introduction au language R / Introduction to R langage", "shortName": "Introduction to R langage", "description": "Objectifs pédagogiques :\r\nÀ l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du langage R et ses principes. Ils seront capables de les appliquer pour effectuer des calculs ou des représentations graphiques simples. Ils seront de plus autonomes pour manipuler leurs tableaux de données.\r\nAttention : ce module n’est ni un module de statistique, ni un module d’analyse statistique des données.\r\n\r\nProgramme :\r\n* Structures et manipulation de données\r\n* Principaux éléments du langage de programmation (boucle, fonctions…)\r\n* Différentes représentations graphiques de données/résultats (plot, histogramme, boxplot)", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0605" ], "keywords": [ "R Language" ], "prerequisites": [], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2025-01-23T14:09:34.394672Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 2, "hoursHandsOn": 10, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/684/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/679/?format=api" ] }, { "id": 361, "name": "Initiation à Linux / Introduction to Linux", "shortName": "Initiation à Linux", "description": "Objectifs pédagogiques\r\nÀ l'issue de la formation, les stagiaires connaîtront les principales commandes Linux et sauront utiliser le système Linux.\r\n\r\nProgramme\r\n* Connexion (ssh) et transferts de fichiers (scp, rsync)\r\n* Interfaces graphiques (Gnome, KDE) / émulateurs\r\n* Aide en ligne\r\n* Utilisation du shell : le rappel des commandes, l’historique, la complétion\r\n* Système de fichiers : arborescence et chemin d’accès, le répertoire d’accueil…\r\n* Gestion des fichiers et des répertoires\r\n* Principe de protection : les attributs sur les fichiers, les droits d’accès", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_0605" ], "keywords": [ "Linux" ], "prerequisites": [], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T14:43:04.391836Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Biologists" ], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "À l'issue de la formation, les stagiaires connaîtront les principales commandes Linux et sauront utiliser le système Linux.", "hoursPresentations": 1, "hoursHandsOn": 5, "hoursTotal": 6, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/586/?format=api" ] }, { "id": 388, "name": "Analysis of shotgun metagenomic data", "shortName": "", "description": "This training session is organized by the Genotoul bioinfo platform. This course is dedicated to the analysis of prokaryotic shotgun metagenomic data from Illumina and Pacbio HiFi sequencing technology. \r\n\r\nAfter an overview of metagenomics and the biases and limitations of analyses, we will look at the main steps involved in analysing metagenomic data and launch independent tools on the genobioinfo cluster.\r\nLearners will then test a workflow to automate processing on a test dataset (metagWGS ).\r\nOn the third day, learners will choose which analysis strategy to start with according to their experimental design and launch the first stage of metagWGS on their own data.\r\nBy the end of the course, trainees will be familiar with the scope, advantages and limitations of shotgun sequencing data analysis and will have started the analysis on their own data.\r\n\r\ncalendar\r\n \r\n\r\nThis training is focused on practice. It consists of several modules with a large variety of exercises:\r\n\r\nFirst Day\r\nStart at 09:00 am\r\nTour de table\r\nIntroduction to metagenomics, Illumina and Pacbio data, analysis stages, analysis limits, etc.\r\nPresentation of some key tools for each stage\r\nPractical work on the main stages launched independently\r\nEnd at 17:00 pm\r\nSecond Day\r\nStart at 09:00 am\r\nIntroduction to the advantages and disadvantages of workflows and containers\r\nLaunch of the data cleansing stage\r\nLaunch of the rest of the workflow and analysis of the multiQC report\r\nEnd at 17:00 pm\r\nThird Day – BYOD\r\nStart at 09:00 am\r\nDefine the analysis strategy and launch the start of the analysis of your own data.\r\nEnd at 17:00 pm maximum", "homepage": "https://bioinfo.genotoul.fr/index.php/events/analysis-of-shotgun-metagenomic-data/", "is_draft": false, "costs": [ "Non-academic for non-academic: 1650€ + 20% taxes (TVA)", "Academic non-INRAE for academic but non-INRAE: 510 € + 20% taxes (TVA)", "INRAE for INRAE's staff: 450 € no VAT charged" ], "topics": [ "http://edamontology.org/topic_3174" ], "keywords": [ "NGS Data Analysis", "Metagenomics" ], "prerequisites": [ "Linux/Unix", "Cluster" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 12, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/300/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" }, { "id": 37, "name": "MIAT - Mathématiques et Informatique Appliquées de Toulouse", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT%20-%20Math%C3%A9matiques%20et%20Informatique%20Appliqu%C3%A9es%20de%20Toulouse/?format=api" } ], "organisedByTeams": [ { "id": 22, "name": "Genotoul-bioinfo", "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api" } ], "logo_url": "http://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png", "updated_at": "2025-12-01T11:55:10.179665Z", "audienceTypes": [ "Professional (continued)" ], "audienceRoles": [ "Life scientists", "Biologists", "Bioinformaticians" ], "difficultyLevel": "Intermediate", "trainingMaterials": [ { "id": 151, "name": "Metagenomic training", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Metagenomic%20training/?format=api" } ], "learningOutcomes": "", "hoursPresentations": 3, "hoursHandsOn": 15, "hoursTotal": 18, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/670/?format=api" ] }, { "id": 353, "name": "Analyse de données métagénomiques shotgun / shotgun metagenomics", "shortName": "Shotgun metagenomics", "description": "Objectifs pédagogiques\r\n\r\nCette formation est dédiée à l’analyse de données métagénomiques procaryotes de type « shotgun » issues de la technologie de séquençage Illumina. Nous présenterons les étapes bioinformatiques nécessaires pour nettoyer les données brutes et les caractériser d’un point de vue taxonomique. Nous aborderons ensuite les différentes stratégies à employer pour assembler les reads et obtenir des comptages sur des gènes prédits. Enfin nous présenterons quelques outils pour obtenir une annotation fonctionnelle des échantillons. A l’issue des 2 jours de formation, les stagiaires connaîtront le périmètre, les avantages et limites des analyses de données de séquençage shotgun. Ils seront capables d’utiliser les outils présentés sur les jeux de données de la formation. L’ensemble des TP se déroulera sur l’infrastructure de Migale et nécessite une pratique courante de la ligne de commande.\r\n\r\nProgramme\r\n\r\nIntroduction générale sur les données métagénomiques\r\nAssignation taxonomique\r\nNettoyage des données brutes\r\nAssemblage / Binning\r\nPrédiction de gènes procaryotes\r\nAnnotation fonctionnelle\r\nConclusion, limites des méthodes", "homepage": "https://documents.migale.inrae.fr/trainings.html", "is_draft": false, "costs": [ "Priced" ], "topics": [ "http://edamontology.org/topic_3697" ], "keywords": [ "Metagenomics" ], "prerequisites": [ "Linux/Unix", "Cluster" ], "openTo": "Everyone", "accessConditions": "", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 88, "name": "BioinfOmics", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api" }, { "id": 82, "name": "INRAE", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api" } ], "organisedByTeams": [ { "id": 10, "name": "MIGALE", "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api" } ], "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png", "updated_at": "2024-01-18T13:16:49.313752Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Intermediate", "trainingMaterials": [], "learningOutcomes": "Cette formation est dédiée à l’analyse de données métagénomiques procaryotes de type « shotgun » issues de la technologie de séquençage Illumina. Nous présenterons les étapes bioinformatiques nécessaires pour nettoyer les données brutes et les caractériser d’un point de vue taxonomique. Nous aborderons ensuite les différentes stratégies à employer pour assembler les reads et obtenir des comptages sur des gènes prédits. Enfin nous présenterons quelques outils pour obtenir une annotation fonctionnelle des échantillons. A l’issue des 2 jours de formation, les stagiaires connaîtront le périmètre, les avantages et limites des analyses de données de séquençage shotgun. Ils seront capables d’utiliser les outils présentés sur les jeux de données de la formation. L’ensemble des TP se déroulera sur l’infrastructure de Migale et nécessite une pratique courante de la ligne de commande.", "hoursPresentations": 5, "hoursHandsOn": 7, "hoursTotal": 12, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/572/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/694/?format=api" ] }, { "id": 371, "name": "Introduction à l'analyse de données métatranscriptomiques avec Galaxy", "shortName": "", "description": "L’objectif de cette formation est de se familiariser avec les étapes et les outils d’analyse de données métatranscriptomiques dans le but de comprendre les fonctions d’une communauté microbienne. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de ces étapes en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à la métatranscriptomique, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- assigner des taxons à des données de métatranscriptomiques,\r\n- extraire des informations fonctionnelles au sein de données de métatranscriptomiques,\r\n- combiner informations taxonomiques et fonctionnelles pour faciliter la compréhension des fonctions d’une communauté microbienne", "homepage": "", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_3697", "http://edamontology.org/topic_0085", "http://edamontology.org/topic_3941", "http://edamontology.org/topic_1775" ], "keywords": [ "Galaxy" ], "prerequisites": [ "Galaxy - Basic usage" ], "openTo": "Internal personnel", "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy", "maxParticipants": null, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 1, "name": "CNRS - IFB", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api" }, { "id": 16, "name": "Université Clermont Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api" } ], "organisedByOrganisations": [ { "id": 96, "name": "Mésocentre Clermont-Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api" }, { "id": 87, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api" } ], "organisedByTeams": [ { "id": 31, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api" } ], "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175", "updated_at": "2024-02-08T11:22:23.706233Z", "audienceTypes": [ "Undergraduate", "Graduate", "Professional (initial)", "Professional (continued)" ], "audienceRoles": [ "Researchers", "Life scientists", "Biologists" ], "difficultyLevel": "Novice", "trainingMaterials": [ { "id": 132, "name": "Metatranscriptomics analysis using microbiome RNA-seq data", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Metatranscriptomics%20analysis%20using%20microbiome%20RNA-seq%20data/?format=api" } ], "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Choose the best approach to analyze metatranscriptomics data\r\n- Understand the functional microbiome characterization using metatranscriptomic results\r\n- Understand where metatranscriptomics fits in ‘multi-omic’ analysis of microbiomes\r\n- Visualise a community structure", "hoursPresentations": 1, "hoursHandsOn": 2, "hoursTotal": 3, "personalised": null, "event_set": [] }, { "id": 366, "name": "Initiation à l’utilisation de la plateforme de bio-analyse Galaxy", "shortName": "", "description": "L’objectif est de se familiariser avec l’interface utilisateur de Galaxy. \r\n\r\nAprès une introduction à Galaxy, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- Importer des données\r\n- Identifier des outils\r\n- Faire une analyse\r\n- Gérer un historique\r\n- Créer un workflow", "homepage": "", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_0091" ], "keywords": [ "Galaxy" ], "prerequisites": [], "openTo": "Internal personnel", "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)", "maxParticipants": null, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 1, "name": "CNRS - IFB", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api" }, { "id": 16, "name": "Université Clermont Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api" } ], "organisedByOrganisations": [ { "id": 87, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api" }, { "id": 96, "name": "Mésocentre Clermont-Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api" } ], "organisedByTeams": [ { "id": 31, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api" } ], "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175", "updated_at": "2024-02-08T10:47:23.782242Z", "audienceTypes": [ "Graduate", "Professional (initial)", "Professional (continued)", "Undergraduate" ], "audienceRoles": [ "Researchers", "Life scientists", "Biologists" ], "difficultyLevel": "Novice", "trainingMaterials": [ { "id": 126, "name": "Galaxy 101 for everyone", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Galaxy%20101%20for%20everyone/?format=api" } ], "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Assess short reads FASTQ quality using FASTQE 🧬😎 and FastQC\r\n- Assess long reads FASTQ quality using Nanoplot and PycoQC\r\n- Perform quality correction with Cutadapt (short reads)\r\n- Summarise quality metrics MultiQC\r\n- Process single-end and paired-end data\r\n- Define what mapping is\r\n- Perform mapping of reads on a reference genome\r\n- Evaluate the mapping output", "hoursPresentations": 1, "hoursHandsOn": 2, "hoursTotal": 3, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/592/?format=api" ] }, { "id": 364, "name": "Formation d'initiation à la plateforme de stockage d'imagerie OMERO", "shortName": "Formation d'initiation à OMERO", "description": "Cette session d'introduction a pour objectif la prise en main d'OMERO et le chargement d'images vers l'instance OMERO hébergée au Mésocentre Clermont Auvergne, service de la plateforme AuBi.\r\n\r\nQu'est-ce qu'OMERO ?\r\nOMERO est une plateforme logicielle permettant de visualiser, de gérer et d'annoter des données d'images scientifiques. OMERO vous permet d'importer et d'archiver vos images, de les annoter et de baliser vos images, d'enregistrer vos protocoles expérimentaux et d'exporter vos images dans de nombreux formats. Il vous permet également de collaborer avec des collègues en créant des groupes d'utilisateurs.\r\n\r\nPourquoi utiliser OMERO ?\r\nC'est très pratique ! Une fois vos données importées, vous n'avez plus à vous soucier des montages réseau et des structures de dossiers. Vos données sont consultables, vous pouvez les annoter, les visualiser, effectuer des flux de travail simples d'analyse d'images, les partager avec des collaborateurs et générer des figures de niveau publication, le tout directement depuis votre navigateur web.\r\n\r\nComment l'utiliser ?\r\nIl existe deux interfaces principales pour OMERO : un client de bureau (OMERO.insight) et une page web (OMERO.web). Elles ont toutes deux des caractéristiques similaires mais pas identiques. Venez découvrir ces outils lors de cette formation AuBi !\r\n\r\nPour cela, il est indispensable d'être équipé d'un ordinateur portable sur lequel omero insight sera installé en amont de la formation et d'avoir un compte actif au Mésocentre Clermont Auvergne qui vous permettra ensuite de vous connecter sur omero.web.", "homepage": "https://mesocentre.uca.fr/projets-associes/plateforme-aubi", "is_draft": false, "costs": [], "topics": [ "http://edamontology.org/topic_3383" ], "keywords": [ "Bioimaging", "FAIR" ], "prerequisites": [ "none" ], "openTo": "Everyone", "accessConditions": "Having an account on Mésocentre Clermont Auvergne\r\nComing with a laptop and an Eduroam access", "maxParticipants": 10, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/780/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 16, "name": "Université Clermont Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api" } ], "organisedByOrganisations": [ { "id": 56, "name": "INSERM", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INSERM/?format=api" }, { "id": 87, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api" } ], "organisedByTeams": [ { "id": 31, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api" } ], "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175", "updated_at": "2025-02-17T12:41:56.490365Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": null, "hoursHandsOn": null, "hoursTotal": null, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/590/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/617/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/706/?format=api" ] }, { "id": 382, "name": "Introduction à l'analyse de données transcriptomiques avec Galaxy", "shortName": "", "description": "L’objectif est de se familiariser avec les étapes d’analyses des données transcriptomiques ou RNA-seq avec référence pour extraire les gènes et fonctions différentiellement exprimés. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\n\r\nAprès une introduction à la transcriptomique, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- évaluer la qualité des données transcriptomiques,\r\n- aligner des données transcriptomiques sur un génome de référence,\r\n- estimer le nombre de séquences par gènes,\r\n- construire et faire une analyse d’expression différentielle des gènes\r\n- faire une analyse de l’enrichissement fonctionnel des gènes différentiellement exprimés", "homepage": "", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_3308", "http://edamontology.org/topic_1775", "http://edamontology.org/topic_0203", "http://edamontology.org/topic_3170" ], "keywords": [ "Galaxy", "RNA-seq", "Transcriptomics (RNA-seq)" ], "prerequisites": [ "Galaxy - Basic usage" ], "openTo": "Internal personnel", "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy", "maxParticipants": null, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/807/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 1, "name": "CNRS - IFB", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api" }, { "id": 16, "name": "Université Clermont Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api" } ], "organisedByOrganisations": [ { "id": 96, "name": "Mésocentre Clermont-Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api" }, { "id": 87, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api" } ], "organisedByTeams": [ { "id": 31, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api" } ], "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175", "updated_at": "2024-06-06T08:06:54.982689Z", "audienceTypes": [ "Undergraduate", "Graduate", "Professional (initial)", "Professional (continued)" ], "audienceRoles": [ "Researchers", "Life scientists", "Biologists" ], "difficultyLevel": "Novice", "trainingMaterials": [ { "id": 144, "name": "Reference-based RNA-Seq data analysis with Galaxy", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Reference-based%20RNA-Seq%20data%20analysis%20with%20Galaxy/?format=api" }, { "id": 145, "name": "Introduction to Transcriptomics", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Introduction%20to%20Transcriptomics/?format=api" } ], "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Check a sequence quality report generated by FastQC for RNA-Seq data\r\n- Explain the principle and specificity of mapping of RNA-Seq data to an eukaryotic reference genome\r\n- Select and run a state of the art mapping tool for RNA-Seq data\r\n- Evaluate the quality of mapping results\r\n- Describe the process to estimate the library strandness\r\n- Estimate the number of reads per genes\r\n- Explain the count normalization to perform before sample comparison\r\n- Construct and run a differential gene expression analysis\r\n- Analyze the DESeq2 output to identify, annotate and visualize differentially expressed genes\r\n- Perform a gene ontology enrichment analysis\r\n- Perform and visualize an enrichment analysis for KEGG pathways", "hoursPresentations": 1, "hoursHandsOn": 7, "hoursTotal": 8, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/637/?format=api" ] }, { "id": 373, "name": "Introduction à la segmentation des nucléoles et extraction de caractéristiques avec Galaxy", "shortName": "", "description": "L’objectif de cette formation est de se familiariser avec les premières étapes à l’analyse d’images. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main des ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à l’analyse d’images, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- télécharger des images depuis un répertoire d’images publiques,- segmenter une image\r\n- extraire les caractéristiques des images", "homepage": "", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_3383", "http://edamontology.org/topic_3382" ], "keywords": [ "Galaxy" ], "prerequisites": [], "openTo": "Internal personnel", "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy", "maxParticipants": null, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 1, "name": "CNRS - IFB", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api" }, { "id": 16, "name": "Université Clermont Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api" } ], "organisedByOrganisations": [ { "id": 96, "name": "Mésocentre Clermont-Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api" }, { "id": 87, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api" } ], "organisedByTeams": [ { "id": 31, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api" } ], "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175", "updated_at": "2024-02-08T11:28:41.024508Z", "audienceTypes": [ "Undergraduate", "Graduate", "Professional (initial)", "Professional (continued)" ], "audienceRoles": [ "Researchers", "Life scientists", "Biologists" ], "difficultyLevel": "Novice", "trainingMaterials": [ { "id": 134, "name": "Nucleoli segmentation and feature extraction using CellProfiler", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Nucleoli%20segmentation%20and%20feature%20extraction%20using%20CellProfiler/?format=api" } ], "learningOutcomes": "At the end, learners would be able to:\r\n- How to download images from a public image repository.\r\n- How to segment cell nuclei using CellProfiler in Galaxy.\r\n- How to segment cell nucleoli using CellProfiler in Galaxy.\r\n- How to extract features for images, nuclei and nucleoli.", "hoursPresentations": 1, "hoursHandsOn": 2, "hoursTotal": 3, "personalised": null, "event_set": [] }, { "id": 372, "name": "Introduction à l'analyse d’images avec Galaxy", "shortName": "", "description": "L’objectif de cette formation est de se familiariser avec les premières étapes à l’analyse d’images. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main des ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à l’analyse d’images, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- extraire des métadonnées d’une image,\r\n- convertir, filtrer et segmenter une image", "homepage": "", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_3383", "http://edamontology.org/topic_3382" ], "keywords": [ "Galaxy" ], "prerequisites": [ "Galaxy - Basic usage" ], "openTo": "Internal personnel", "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy", "maxParticipants": null, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 1, "name": "CNRS - IFB", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api" }, { "id": 16, "name": "Université Clermont Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api" } ], "organisedByOrganisations": [ { "id": 96, "name": "Mésocentre Clermont-Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api" }, { "id": 87, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api" } ], "organisedByTeams": [ { "id": 31, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api" } ], "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175", "updated_at": "2024-02-08T11:25:36.663764Z", "audienceTypes": [ "Undergraduate", "Graduate", "Professional (initial)", "Professional (continued)" ], "audienceRoles": [ "Researchers", "Life scientists", "Biologists" ], "difficultyLevel": "Novice", "trainingMaterials": [ { "id": 133, "name": "Introduction to image analysis using Galaxy", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Introduction%20to%20image%20analysis%20using%20Galaxy/?format=api" } ], "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- How to handle images in Galaxy.\r\n- How to perform basic image processing in Galaxy", "hoursPresentations": 1, "hoursHandsOn": 2, "hoursTotal": 3, "personalised": null, "event_set": [] }, { "id": 335, "name": "FAIR_bioinfo_@_AuBi", "shortName": "FAIR_bioinfo", "description": "Introduction aux bonnes pratiques en bio-informatique afin de pérenniser son travail de recherche.\r\n\r\nCette formation permet de découvrir les bonnes pratiques dans le cadre d’un travail nécessitant des approches programmatiques (statistiques, programmation d’outils, analyses de données biologiques). Elle s’inscrit aussi dans l’aspect science-ouverte afin de rendre plus facilement disponible et pérenne le travail bio-informatique. Après une introduction aux pratiques FAIR axées notamment sur les notions de reproductibilité et de répétabilité du code, plusieurs approches seront abordées: les bonnes pratiques de partage et gestion des versions des outils utilisés ; la gestion des environnements de travail (conda, docker, singularity) ; découverte du gestionnaire de workflow Snakemake : et enfin la documentation du code avec Rmarkdown et Jupyter.", "homepage": "https://mesocentre.uca.fr/actualites/pratiques-fair-en-bioinformatique-pour-des-analyses-reproductibles", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_0091", "http://edamontology.org/topic_0769", "http://edamontology.org/topic_3307", "http://edamontology.org/topic_3068" ], "keywords": [ "Methodology", "Programming Languages & Computer Sciences", "Cloud", "Linux", "Snakemake", "Docker", "R" ], "prerequisites": [ "Linux - Basic Knowledge" ], "openTo": "Everyone", "accessConditions": "Having an account on Mesocentre Clermont Auvergne Infrastructure", "maxParticipants": 15, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [], "organisedByOrganisations": [ { "id": 87, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api" }, { "id": 94, "name": "University Clermont Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/University%20Clermont%20Auvergne/?format=api" } ], "organisedByTeams": [ { "id": 31, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api" } ], "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175", "updated_at": "2023-06-14T10:18:52.160465Z", "audienceTypes": [], "audienceRoles": [], "difficultyLevel": "Novice", "trainingMaterials": [], "learningOutcomes": "", "hoursPresentations": 10, "hoursHandsOn": 20, "hoursTotal": 30, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/537/?format=api", "https://catalogue.france-bioinformatique.fr/api/event/709/?format=api" ] }, { "id": 370, "name": "Introduction à l'analyse de données de métabarcoding 16S avec Galaxy", "shortName": "", "description": "L’objectif de cette formation est de se familiariser avec les étapes et les outils pour analyses de données de métabarcoding 16S. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de ces étapes d’analyses en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction au métabarcoding 16S, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- évaluer la qualité de données de métabarcoding ,\r\n- analyser et visualiser une communauté microbienne à partir de données de métabarcoding 16S", "homepage": "", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_3697", "http://edamontology.org/topic_0637" ], "keywords": [ "Galaxy", "Metabarcoding" ], "prerequisites": [], "openTo": "Internal personnel", "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy", "maxParticipants": null, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 1, "name": "CNRS - IFB", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api" }, { "id": 16, "name": "Université Clermont Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api" } ], "organisedByOrganisations": [ { "id": 96, "name": "Mésocentre Clermont-Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api" }, { "id": 87, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api" } ], "organisedByTeams": [ { "id": 31, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api" } ], "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175", "updated_at": "2024-02-08T11:18:18.945136Z", "audienceTypes": [ "Undergraduate", "Graduate", "Professional (initial)", "Professional (continued)" ], "audienceRoles": [ "Researchers", "Life scientists", "Biologists" ], "difficultyLevel": "Novice", "trainingMaterials": [ { "id": 131, "name": "16S Microbial Analysis with mothur", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/16S%20Microbial%20Analysis%20with%20mothur/?format=api" } ], "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Analyze of 16S rRNA sequencing data using the mothur toolsuite in Galaxy\r\n- Using a mock community to assess the error rate of your sequencing experiment\r\n- Visualize sample diversity using Krona and Phinch", "hoursPresentations": 1, "hoursHandsOn": 2, "hoursTotal": 3, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/595/?format=api" ] }, { "id": 369, "name": "Introduction au profilage taxonomique et visualisation de communautés microbiennes à partir de données métagénomiques avec Galaxy", "shortName": "", "description": "L’objectif de cette formation est de se familiariser avec les étapes et les outils d’analyse de données de métagénomiques pour caractériser et visualiser des communautés microbiennes. Nous proposons au personnel non-bioinformaticien de les accompagner dans la prise en main de ces étapes en utilisant la plateforme de bio-analyse Galaxy. \r\n\r\nAprès une introduction à la métagénomique, une session pratique sur la plateforme Galaxy couvrira comment :\r\n- assigner des taxons à des données de métagénomiques,\r\n- visualiser une communauté microbienne à partir d’assignations taxonomiques", "homepage": "", "is_draft": false, "costs": [ "Free to academics" ], "topics": [ "http://edamontology.org/topic_3697", "http://edamontology.org/topic_3174", "http://edamontology.org/topic_0637" ], "keywords": [ "Galaxy" ], "prerequisites": [ "Galaxy - Basic usage" ], "openTo": "Internal personnel", "accessConditions": "Formation ouverte au personnel de l’UCA & Associés\r\nAvoir un ordinateur portable et un accès wifi eduroam\r\nAvoir un compte sur la plateforme Galaxy (Faire une demande le cas échéant sur hub.mesocentre.uca.fr)\r\nÊtre familier avec Galaxy", "maxParticipants": null, "contacts": [ "https://catalogue.france-bioinformatique.fr/api/userprofile/261/?format=api", "https://catalogue.france-bioinformatique.fr/api/userprofile/677/?format=api" ], "elixirPlatforms": [], "communities": [], "sponsoredBy": [ { "id": 1, "name": "CNRS - IFB", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/CNRS%20-%20IFB/?format=api" }, { "id": 16, "name": "Université Clermont Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Universit%C3%A9%20Clermont%20Auvergne/?format=api" } ], "organisedByOrganisations": [ { "id": 96, "name": "Mésocentre Clermont-Auvergne", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/M%C3%A9socentre%20Clermont-Auvergne/?format=api" }, { "id": 87, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/organisation/AuBi/?format=api" } ], "organisedByTeams": [ { "id": 31, "name": "AuBi", "url": "https://catalogue.france-bioinformatique.fr/api/team/AuBi/?format=api" } ], "logo_url": "https://mesocentre.uca.fr/medias/photo/logoaubi-2019minus_1553844844490-jpg?ID_FICHE=41175", "updated_at": "2024-02-08T11:23:11.090144Z", "audienceTypes": [ "Undergraduate", "Graduate", "Professional (initial)", "Professional (continued)" ], "audienceRoles": [ "Researchers", "Life scientists", "Biologists" ], "difficultyLevel": "Novice", "trainingMaterials": [ { "id": 130, "name": "Taxonomic Profiling and Visualization of Metagenomic Data", "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Taxonomic%20Profiling%20and%20Visualization%20of%20Metagenomic%20Data/?format=api" } ], "learningOutcomes": "At the end of the tutorial, learners would be able to:\r\n- Explain what taxonomic assignment is\r\n- Explain how taxonomic assignment works\r\n- Apply Kraken and MetaPhlAn to assign taxonomic labels\r\n- Apply Krona and Pavian to visualize results of assignment and understand the output\r\n- Identify taxonomic classification tool that fits best depending on their data", "hoursPresentations": 1, "hoursHandsOn": 2, "hoursTotal": 3, "personalised": null, "event_set": [ "https://catalogue.france-bioinformatique.fr/api/event/599/?format=api" ] } ] }