Handles creating, reading and updating training events.

GET /api/training/?format=api&offset=100&ordering=organisedByOrganisations
HTTP 200 OK
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "count": 378,
    "next": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=120&ordering=organisedByOrganisations",
    "previous": "https://catalogue.france-bioinformatique.fr/api/training/?format=api&limit=20&offset=80&ordering=organisedByOrganisations",
    "results": [
        {
            "id": 152,
            "name": "Cycle « Analyse de données de séquençage à haut-débit » - Module 5/5 : Métagénomique",
            "shortName": "",
            "description": "Bilille propose chaque année un cycle de formation d'introduction à l'analyse des données de séquençage à haut débit.\r\nCe cycle est composé de 5 modules, à la carte : \r\n- Module 1: Analyses ADN\r\n- Module 2: Analyses de variants\r\n- Module 3: Analyses RNA-seq, bioinformatique\r\n- Module 4: Analyses RNA-seq, biostatistique\r\n- Module 5: Métagénomique\r\nLes fiches descriptives sont accessibles sur le site de Bilille. Chaque module comprend des présentations générales et des séances pratiques sur ordinateur, avec Galaxy.\r\nLes objectifs du module 5 sont :\r\n- Connaître les différentes méthodes de séquençage à haut débit pour la métagénomique, avec leurs avantages et leurs limites : métagénomique ciblée, métagénomique génomes entiers, métatranscriptomique\r\n- Comprendre les différentes étapes analytiques du traitement bioinformatique des données et savoir les mettre en œuvre\r\n- Savoir conduire une analyse statistique pour l’estimation de la richesse de la biodiversité\r\n- Aller jusqu’aux conclusions biologiques",
            "homepage": "https://bilille.univ-lille.fr/training/training-offer",
            "is_draft": false,
            "costs": [],
            "topics": [],
            "keywords": [
                "NGS Data Analysis",
                "Metagenomics",
                "Assembly of genomes and transcriptomes",
                "Read alignment on genomes",
                "metatranscriptomics",
                "NGS Sequencing Data Analysis"
            ],
            "prerequisites": [],
            "openTo": "Internal personnel",
            "accessConditions": "- Etre familier avec la plate-forme web Galaxy (idéalement avoir suivi la formation bilille « Initiation à Galaxy »)\r\n- Avoir suivi le module 1/5 « Analyses ADN » de ce cycle ou toute autre formation permettant de justifier de connaissances sur les données de séquençage haut débit et leur alignement. Etre familier avec le vocabulaire et les étapes de base de l’analyse de données de séquençage : nettoyage, assemblage, mapping",
            "maxParticipants": null,
            "contacts": [],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 66,
                    "name": "University of Lille",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/University%20of%20Lille/?format=api"
                },
                {
                    "id": 56,
                    "name": "INSERM",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INSERM/?format=api"
                },
                {
                    "id": 52,
                    "name": "CNRS",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/CNRS/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 3,
                    "name": "Bilille",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/Bilille/?format=api"
                }
            ],
            "logo_url": "https://bilille.univ-lille.fr/fileadmin/_processed_/9/2/csm_logo_bilille_complet_65be9bda8b.png",
            "updated_at": "2024-12-09T17:42:35.775242Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": null,
            "hoursHandsOn": null,
            "hoursTotal": null,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/281/?format=api"
            ]
        },
        {
            "id": 150,
            "name": "Cycle « Analyse de données de séquençage à haut-débit » - Module 4/5 : Analyses RNA-seq - partie 2 (biostatistique)",
            "shortName": "",
            "description": "Bilille propose chaque année un cycle de formation d'introduction à l'analyse des données de séquençage à haut débit.\r\nCe cycle est composé de 5 modules, à la carte : \r\n- Module 1: Analyses ADN\r\n- Module 2: Analyses de variants\r\n- Module 3: Analyses RNA-seq, bioinformatique\r\n- Module 4: Analyses RNA-seq, biostatistique\r\n- Module 5: Métagénomique\r\nLes fiches descriptives sont accessibles sur le site de Bilille. Chaque module comprend des présentations générales et des séances pratiques sur ordinateur, avec Galaxy.\r\nLes objectifs du module 4 sont :\r\n- Savoir réaliser une analyse différentielle de données RNA-seq à partir d’une table de comptage (quantifiant les lectures alignées) à l’aide du portail Galaxy\r\n- Avoir un regard critique sur les résultats d’une analyse différentielle\r\n- Comprendre différentes méthodes de normalisation et les contextes d’utilisation correspondants",
            "homepage": "https://bilille.univ-lille.fr/training/training-offer",
            "is_draft": false,
            "costs": [],
            "topics": [],
            "keywords": [
                "NGS Data Analysis",
                "Transcriptomics (RNA-seq)",
                "NGS Sequencing Data Analysis"
            ],
            "prerequisites": [],
            "openTo": "Internal personnel",
            "accessConditions": "- Etre familier avec la plate-forme web Galaxy (idéalement avoir suivi la formation bilille « Initiation à Galaxy »)\r\n- Avoir suivi le module 2/5 «Analyses RNA-seq–partie 1 (bioinformatique)» de ce cycle ou toute autre formation permettant de justifier de connaissances sur les données de séquençage haut débit et la façon d’obtenir une table de comptage",
            "maxParticipants": null,
            "contacts": [],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 66,
                    "name": "University of Lille",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/University%20of%20Lille/?format=api"
                },
                {
                    "id": 56,
                    "name": "INSERM",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INSERM/?format=api"
                },
                {
                    "id": 52,
                    "name": "CNRS",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/CNRS/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 3,
                    "name": "Bilille",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/Bilille/?format=api"
                }
            ],
            "logo_url": "https://bilille.univ-lille.fr/fileadmin/_processed_/9/2/csm_logo_bilille_complet_65be9bda8b.png",
            "updated_at": "2024-12-09T17:42:50.474644Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": null,
            "hoursHandsOn": null,
            "hoursTotal": null,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/279/?format=api"
            ]
        },
        {
            "id": 148,
            "name": "Cycle « Analyse de données de séquençage à haut-débit » - Module 3/5 : Analyses RNA-seq - partie 1 (bioinformatique)",
            "shortName": "",
            "description": "Bilille propose chaque année un cycle de formation d'introduction à l'analyse des données de séquençage à haut débit.\r\nCe cycle est composé de 5 modules, à la carte : \r\n- Module 1: Analyses ADN\r\n- Module 2: Analyses de variants\r\n- Module 3: Analyses RNA-seq, bioinformatique\r\n- Module 4: Analyses RNA-seq, biostatistique\r\n- Module 5: Métagénomique\r\nLes fiches descriptives sont accessibles sur le site de Bilille. Chaque module comprend des présentations générales et des séances pratiques sur ordinateur, avec Galaxy.\r\nLes objectifs du module 3 sont :\r\n- Savoir réaliser une analyse transcriptomique par RNA-seq avec ou sans (de novo) génome de référence à l’aide du portail Galaxy\r\n- Avoir un regard critique sur la qualité des lectures obtenues par le séquenceur\r\n- Connaître et savoir paramétrer les outils nécessaires à l’analyse",
            "homepage": "https://bilille.univ-lille.fr/training/training-offer",
            "is_draft": false,
            "costs": [],
            "topics": [],
            "keywords": [
                "NGS Data Analysis",
                "Analysis of RNAseq data",
                "Gene expression differential analysis",
                "Transcript and transcript variant analysis",
                "Transcriptomics (RNA-seq)",
                "NGS Sequencing Data Analysis"
            ],
            "prerequisites": [],
            "openTo": "Internal personnel",
            "accessConditions": "Etre familier avec la plate-forme web Galaxy (idéalement avoir suivi la formation bilille « Initiation à Galaxy »)\r\nAvoir suivi le module 1/5 « Analyses ADN » de ce cycle ou toute autre formation permettant de justifier de connaissances sur les données de séquençage haut débit et leur alignement.",
            "maxParticipants": null,
            "contacts": [],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 66,
                    "name": "University of Lille",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/University%20of%20Lille/?format=api"
                },
                {
                    "id": 56,
                    "name": "INSERM",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INSERM/?format=api"
                },
                {
                    "id": 52,
                    "name": "CNRS",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/CNRS/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 3,
                    "name": "Bilille",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/Bilille/?format=api"
                }
            ],
            "logo_url": "https://bilille.univ-lille.fr/fileadmin/_processed_/9/2/csm_logo_bilille_complet_65be9bda8b.png",
            "updated_at": "2024-12-09T17:43:04.940425Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": null,
            "hoursHandsOn": null,
            "hoursTotal": null,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/277/?format=api"
            ]
        },
        {
            "id": 390,
            "name": "Cycle « Analyse de données de séquençage à haut-débit » - Module Analyses de variants (sous Galaxy)- version 2023",
            "shortName": "",
            "description": "Bilille, la plateforme de bioinformatique, biostatistique et bioanalyse de la métropole lilloise, propose chaque année un cycle de formation d'introduction à l'analyse des données de séquençage à haut débit.\r\nCe cycle est composé des modules suivants, à la carte : \r\n- Analyses ADN\r\n- Analyses de variants\r\n- Métagénomique\r\n- Analyses ChIP-seq\r\n- Analyses RNA-seq\r\nLes fiches descriptives sont accessibles sur le site de bilille. Chaque module comprend des présentations générales et des séances pratiques sur ordinateur, avec Galaxy.\r\n\r\nLes objectifs du module Analyses de variants sont :\r\n-\tComprendre les grands principes de la détection de variants\r\n-\tRéaliser les différentes étapes du post-traitement des données d’alignement à la détection de variants\r\n-\tAdapter l’analyse en fonction du type de données NGS générées\r\n-\tComprendre la structure des données de variants\r\n-\tSavoir annoter des variants\r\n-\tEtre capable d’interpréter une liste de variants grâce aux outils libres disponibles",
            "homepage": "https://bilille.univ-lille.fr/training/training-offer",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [],
            "keywords": [],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "-\tEtre familier avec la plate-forme web Galaxy (idéalement avoir suivi la formation Bilille « Initiation à Galaxy »)\r\n-\tAvoir suivi le module 1/5 « Analyses ADN » de ce cycle ou toute autre formation permettant de justifier de connaissances sur les données de séquençage haut débit et leur alignement.",
            "maxParticipants": null,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/763/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 56,
                    "name": "INSERM",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INSERM/?format=api"
                },
                {
                    "id": 66,
                    "name": "University of Lille",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/University%20of%20Lille/?format=api"
                },
                {
                    "id": 52,
                    "name": "CNRS",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/CNRS/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 3,
                    "name": "Bilille",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/Bilille/?format=api"
                }
            ],
            "logo_url": "https://bilille.univ-lille.fr/fileadmin/_processed_/9/2/csm_logo_bilille_complet_65be9bda8b.png",
            "updated_at": "2024-12-09T17:39:25.617963Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": null,
            "hoursHandsOn": null,
            "hoursTotal": null,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/674/?format=api"
            ]
        },
        {
            "id": 279,
            "name": "Annotation and analysis of prokaryotic genomes using the MicroScope platform",
            "shortName": "MicroScope training",
            "description": "In an effort to inform members of the research community about our annotation methods, to provide training for collaborators and other scientists who use the MicroScope platfom, and to inform scientific public on the analysis available in PkGDB (Prokaryotic Genome DataBase), we have developed a 4.5-day course in Microbial Genome Annotation and Comparative Analysis using the MaGe graphical interfaces.\r\n\r\nThis course will familiarize attendees with LABGeM’s annotation pipeline and the manual annotation software MaGe (Magnifying Genome) . No specific bioinformatics skill is required: detailed instruction on the algorithm developed in each annotation methods can be found in specific training courses on «Genomic sequences analysis». Here we focus on the general idea behind each method and, above all, the way you can interpret the corresponding results and combine them with other evidences in order to change or correct the current automatic functional annotation of a given gene, if necessary.\r\n\r\nThis course will also describe how to perform effective searches and analysis of procaryotic data using the graphical functionalities of the MaGe’s interfaces. Because of the numerous pre-computation available in our system (results of “common” annotation tools, synteny with all complete bacterial genomes, metabolic pathway reconstruction, fusion/fission events, genomic islands, …), many practical exercises allow attendees to get familiar with the use the MaGe graphical interfaces in order to efficiently explore these sets of results.",
            "homepage": "https://labgem.genoscope.cns.fr/professional-trainings/microscope-professional-trainings/training-annotation-analysis-of-prokaryotic-genomes-using-the-microscope-platform/",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0797",
                "http://edamontology.org/topic_0085",
                "http://edamontology.org/topic_3301"
            ],
            "keywords": [],
            "prerequisites": [
                "Licence"
            ],
            "openTo": "Everyone",
            "accessConditions": "External training sessions can also be scheduled on demand, in France or abroad. See : https://labgem.genoscope.cns.fr/professional-trainings/microscope-professional-trainings/external-microscope-professional-training-sessions/",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/90/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [
                {
                    "id": 15,
                    "name": "Laboratory of Bioinformatics Analyses for Genomics and Metabolism",
                    "url": "https://catalogue.france-bioinformatique.fr/api/eventsponsor/Laboratory%20of%20Bioinformatics%20Analyses%20for%20Genomics%20and%20Metabolism/?format=api"
                }
            ],
            "organisedByOrganisations": [
                {
                    "id": 67,
                    "name": "University Paris-Saclay",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/University%20Paris-Saclay/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 9,
                    "name": "MicroScope",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MicroScope/?format=api"
                }
            ],
            "logo_url": "https://labgem.genoscope.cns.fr/wp-content/uploads/2019/06/MicroScope_logo-300x210.png",
            "updated_at": "2025-12-09T09:10:02.012461Z",
            "audienceTypes": [
                "Undergraduate",
                "Graduate",
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Researchers",
                "Life scientists",
                "Biologists",
                "Curators"
            ],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [],
            "learningOutcomes": "Annotation and comparative analysis of bacterial genomes:\r\n\r\n- acquire theoretical and practical knowledge of genome annotation tools (structural and functional annotation, metabolic networks annotation)\r\n- interpret the results of functional annotation tools\r\nperform various comparative analyses : conserved synteny analyses, pan-genome, phylogenetic and metabolic profiles.\r\n- analyse the results of metabolic networks prediction tools and look for candidate genes for enzyme activities.\r\n- use the tools to analyse the genome(s) of interest of participants",
            "hoursPresentations": null,
            "hoursHandsOn": null,
            "hoursTotal": 31,
            "personalised": false,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/439/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/506/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/436/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/507/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/577/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/576/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/659/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/658/?format=api"
            ]
        },
        {
            "id": 290,
            "name": "NGS data analysis on the command line",
            "shortName": "NGS-analysis-cli",
            "description": "This hands-on course will teach bioinformatic approaches for analyzing Illumina sequencing data. Our goal is to introduce the command line skills you need to make the most of your NGS data. \r\nDuring this 4-day training we will first introduce the Linux environment, shell commands and basic R scripting.  And then we will focus on two NGS data analyses -- small RNA-seq and RNA-seq -- based on published datasets from the model organism Arabidopsis thaliana",
            "homepage": "https://www.ibmp.cnrs.fr/bioinformatics-trainings/",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [
                "http://edamontology.org/topic_0102",
                "http://edamontology.org/topic_3170",
                "http://edamontology.org/topic_2269",
                "http://edamontology.org/topic_3168"
            ],
            "keywords": [],
            "prerequisites": [
                "none"
            ],
            "openTo": "Internal personnel",
            "accessConditions": "This training is dedicated to academics working in a laboratory of Unistra/CNRS.",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/124/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 79,
                    "name": "IBMP",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IBMP/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 14,
                    "name": "BiGEst",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/BiGEst/?format=api"
                }
            ],
            "logo_url": null,
            "updated_at": "2024-01-22T14:51:37.215331Z",
            "audienceTypes": [],
            "audienceRoles": [
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "Applied Knowledge (Know-how):\r\n- Basic proficiency at the Linux command line prompt\r\n- Basic proficiency of R (environment, objects, graphs) \r\n- Next generation sequencing (NGS) file formats; reference genomes - Mapping NGS read data to reference genomes (bowtie, samtools)\r\n- Small RNA-seq analysis; epigenomics applications (ShortStack)\r\n- RNA-seq for transcriptomics; differential gene expression analysis (HISAT2, DESeq2) - Data wrangling and visualization in R (Rstudio, ggplot2)",
            "hoursPresentations": 12,
            "hoursHandsOn": 16,
            "hoursTotal": 28,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/503/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/504/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/589/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/454/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/660/?format=api"
            ]
        },
        {
            "id": 350,
            "name": "Formation Principes FAIR dans un projet de bioinformatique",
            "shortName": "FAIR-Bioinfo-Strasbourg",
            "description": "Cette formation sur 3 jours est destinée à des bioinformaticiens et biostatisticiens souhaitant acquérir des compétences théoriques et pratiques sur les principes \"FAIR\" (Facile à trouver, Accessible, Interopérable, Réutilisable) appliqués à un projet d'analyse et/ou de développement.",
            "homepage": "",
            "is_draft": false,
            "costs": [
                "Free to academics"
            ],
            "topics": [],
            "keywords": [
                "Programming Languages & Computer Sciences",
                "FAIR",
                "Snakemake",
                "Docker"
            ],
            "prerequisites": [
                "Linux - Basic Knowledge"
            ],
            "openTo": "Everyone",
            "accessConditions": "Academics",
            "maxParticipants": 14,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/563/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/userprofile/124/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 79,
                    "name": "IBMP",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IBMP/?format=api"
                },
                {
                    "id": 83,
                    "name": "IGBMC",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/IGBMC/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 14,
                    "name": "BiGEst",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/BiGEst/?format=api"
                }
            ],
            "logo_url": null,
            "updated_at": "2023-12-20T15:44:00.254606Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Bioinformaticians"
            ],
            "difficultyLevel": "",
            "trainingMaterials": [],
            "learningOutcomes": "A l'issue de cette formation, les participants pourront mettre en oeuvre les principes de la science reproductible : encapsuler un environnement de travail (Docker, Singularity), concevoir et exécuter des workflows (Snakemake), gérer des versions de code (Git), passer à l’échelle sur un cluster de calcul (Slurm), gérer des environnements logiciels (Conda) et assurer la traçabilité de leur analyse à l’aide de Notebooks (Jupyter).",
            "hoursPresentations": 10,
            "hoursHandsOn": 11,
            "hoursTotal": 21,
            "personalised": false,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/568/?format=api"
            ]
        },
        {
            "id": 360,
            "name": "Modélisation in silico de structures 3D de protéines. Prédiction de mutations, de fixation de ligands",
            "shortName": "Modélisation de structures 3D de protéines",
            "description": "Objectifs pédagogiques\r\nA l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du logiciel PyMOL. Ils seront capables de les appliquer pour visualiser leur système biologique d’intérêt, et d’effectuer des commandes basiques d’identification de poches catalytiques, de profilage de surface électrostatique, et de mutations d’acides aminés.\r\n\r\nAussi, ils connaîtront les bases et les outils de bioinformatique structurale et seront autonomes pour effectuer des modèles de protéines par prédiction (Alphafold2), calculer les meilleures poses de fixation de leur(s) ligand(s) (Autodock4) et reconstruire l’éventuel assemblage biologique.\r\n\r\nBonus : Ils s’approprieront ces outils avec une demi-journée dédiée à la modélisation de leur système d’étude : protéines, interactions protéines/ADN, arrimage de ligand, etc.\r\n\r\nProgramme\r\nVisualiser :\r\n* Maîtriser les bases de la visualisation des protéines en 3D avec PyMOL.\r\nComprendre :\r\n* Analyser des structures 3D de protéines (RX ou RMN).\r\n* Identifier des homologues avec HHpred.\r\n* Modéliser par prédiction sa protéine d’intérêt avec Alphafold2.\r\nPrédire :\r\n* Savoir calculer des meilleures poses de ligands avec Autodock.\r\n* Prédir et modéliser les mutations in silico.\r\n\r\n- Points forts et limites des différents outils\r\n- ️“hand- on tutorials”\r\n- Plus une session dédiée : «bring your own protein»",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_1317"
            ],
            "keywords": [
                "Protein structures",
                "2D/3D",
                "Protein/protein interaction modelisation"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T14:36:41.185563Z",
            "audienceTypes": [
                "Professional (initial)"
            ],
            "audienceRoles": [
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "A l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du logiciel PyMOL. Ils seront capables de les appliquer pour visualiser leur système biologique d’intérêt, et d’effectuer des commandes basiques d’identification de poches catalytiques, de profilage de surface électrostatique, et de mutations d’acides aminés.\r\n\r\nAussi, ils connaîtront les bases et les outils de bioinformatique structurale et seront autonomes pour effectuer des modèles de protéines par prédiction (Alphafold2), calculer les meilleures poses de fixation de leur(s) ligand(s) (Autodock4) et reconstruire l’éventuel assemblage biologique.\r\n\r\nBonus : Ils s’approprieront ces outils avec une demi-journée dédiée à la modélisation de leur système d’étude : protéines, interactions protéines/ADN, arrimage de ligand, etc.",
            "hoursPresentations": 4,
            "hoursHandsOn": 8,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/585/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/699/?format=api"
            ]
        },
        {
            "id": 359,
            "name": "Comparaison de génomes microbiens",
            "shortName": "Comparaison de génomes microbiens",
            "description": "Objectifs pédagogiques\r\nConnaître les concepts et les principales méthodes bioinformatiques pour comparer un jeu de données de génomes microbiens. Construire et évaluer la qualité d’un jeu de données. Savoir mettre en œuvre une comparaison de génomes et en interpréter les résultats.\r\n\r\nProgramme\r\n* Construction d’un jeu de données :\r\n* Téléchargement de données publiques\r\n* Evaluation de la qualité\r\n* Caractérisation de la diversité génomique\r\n* Stratégies de comparaison :\r\n* Construction de famille de protéines\r\n* Alignement de génomes complets\r\n* Analyse des résultats :\r\n   o Notion de core et pan-génome\r\n   o Notions élémentaires de phylogénomique\r\n   o Visualisation et interprétation des résultats\r\n* Mise en pratique sur un jeu de données bactériens, utilisation des logiciels dRep et Roary sous Galaxy.",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0622",
                "http://edamontology.org/topic_3299"
            ],
            "keywords": [
                "Comparative genomics"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T14:13:49.810934Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "Connaître les concepts et les principales méthodes bioinformatiques pour comparer un jeu de données de génomes microbiens. \r\nConstruire et évaluer la qualité d’un jeu de données. \r\nSavoir mettre en œuvre une comparaison de génomes et en interpréter les résultats.",
            "hoursPresentations": 3,
            "hoursHandsOn": 3,
            "hoursTotal": 6,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/698/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/584/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/696/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/697/?format=api"
            ]
        },
        {
            "id": 358,
            "name": "Traitement bioinformatique et analyse différentielle de données d’expression RNA-seq sous Galaxy",
            "shortName": "Analyse données RNA-seq sous Galaxy",
            "description": "Objectifs pédagogiques\r\nA l’issue de cette formation, vous serez capable, dans le cadre d’une analyse de données RNA- seq avec génome de référence et plan d’expérience simple :\r\n* de connaître le vocabulaire et les concepts bioinformatiques et biostatistiques ;\r\n* de savoir enchaîner de façon pertinente un ensemble d’outils bioinformatiques et biostatistiques dans l’environnement Galaxy ;\r\n* de comprendre le matériel et méthodes d’un article du domaine ;\r\n* d’évaluer la pertinence d’une analyse RNA-seq en identifiant les éléments clefs et comprendre les particularités liées à la nature des données.\r\n\r\nProgramme\r\nBioinformatique :\r\n* Obtenir des données de qualité : nettoyage, filtrage, qualité\r\n* Aligner les lectures sur un génome de référence\r\n* Détecter de nouveaux transcrits\r\n* Quantifier l’expression des gènes\r\n* Préparer et déployer unensemble d’analyses sur plusieurs échantillons\r\n\r\nBiostatistique :\r\n* Construire un plan d’expérience simple\r\n* Normaliser les données de comptage\r\n* Identifier les gènes différentiellements exprimés\r\n* Se sensibiliser aux tests multiples\r\n\r\nAnalyse de protocoles Bioinformatique et Biostatistiques issus de la littérature",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_3308",
                "http://edamontology.org/topic_0203",
                "http://edamontology.org/topic_0102",
                "http://edamontology.org/topic_3170"
            ],
            "keywords": [
                "Gene expression differential analysis",
                "RNA-seq",
                "Transcriptomics"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2025-01-23T15:20:05.977558Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "A l’issue de cette formation, vous serez capable, dans le cadre d’une analyse de données RNA- seq avec génome de référence et plan d’expérience simple :\r\n\r\n* de connaître le vocabulaire et les concepts bioinformatiques et biostatistiques ;\r\n* de savoir enchaîner de façon pertinente un ensemble d’outils bioinformatiques et biostatistiques dans l’environnement Galaxy ;\r\n* de comprendre le matériel et méthodes d’un article du domaine ;\r\n* d’évaluer la pertinence d’une analyse RNA-seq en identifiant les éléments clefs et comprendre les particularités liées à la nature des données.",
            "hoursPresentations": 6,
            "hoursHandsOn": 12,
            "hoursTotal": 18,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/583/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/690/?format=api"
            ]
        },
        {
            "id": 284,
            "name": "Analyse primaire de données issues de séquenceurs nouvelle génération sous Galaxy",
            "shortName": "Analyse de données NGS sous Galaxy",
            "description": "Objectifs pédagogiques\r\nConnaître les concepts et méthodes bioinformatiques utilisés pour l’analyse primaire de données issues de séquenceurs nouvelle génération (NGS). Savoir effectuer un alignement sur un génome de référence, un assemblage de novo d’un génome bactérien\r\n\r\nProgramme\r\nThéorie\r\n* Présentation des différents types de technologies de séquençage (lectures longues et courtes)\r\n\r\nPratique : Analyse des données de séquençage d’un génome bactérien\r\n* Contrôle qualité\r\n* Assemblage de-novo\r\n* Nettoyage des données\r\n* Assemblage\r\n* Visualisation et statistiques sur l’assemblage\r\n* Alignement de lectures sur un génome de référence et visualisation\r\nTous les TPs seront réalisés sous l’environnement d’exécution de traitements Galaxy.",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0092",
                "http://edamontology.org/topic_0102",
                "http://edamontology.org/topic_0196",
                "http://edamontology.org/topic_3168"
            ],
            "keywords": [
                "Galaxy",
                "NGS"
            ],
            "prerequisites": [
                "Galaxy - Basic usage"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T13:51:11.796060Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "All"
            ],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "Connaître les concepts et méthodes bioinformatiques utilisés pour l’analyse primaire de données issues de séquenceurs nouvelle génération (NGS). Savoir effectuer un alignement sur un génome de référence, un assemblage de novo d’un génome bactérien",
            "hoursPresentations": 3,
            "hoursHandsOn": 3,
            "hoursTotal": 6,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/582/?format=api"
            ]
        },
        {
            "id": 388,
            "name": "Analysis of shotgun metagenomic data",
            "shortName": "",
            "description": "This training session is organized by the Genotoul bioinfo platform. This course is dedicated to the analysis of prokaryotic shotgun metagenomic data from Illumina and Pacbio HiFi sequencing technology. \r\n\r\nAfter an overview of metagenomics and the biases and limitations of analyses, we will look at the main steps involved in analysing metagenomic data and launch independent tools on the genobioinfo cluster.\r\nLearners will then test a workflow to automate processing on a test dataset (metagWGS ).\r\nOn the third day, learners will choose which analysis strategy to start with according to their experimental design and launch the first stage of metagWGS on their own data.\r\nBy the end of the course, trainees will be familiar with the scope, advantages and limitations of shotgun sequencing data analysis and will have started the analysis on their own data.\r\n\r\ncalendar\r\n \r\n\r\nThis training is focused on practice. It consists of several modules with a large variety of exercises:\r\n\r\nFirst Day\r\nStart at 09:00 am\r\nTour de table\r\nIntroduction to metagenomics, Illumina and Pacbio data, analysis stages, analysis limits, etc.\r\nPresentation of some key tools for each stage\r\nPractical work on the main stages launched independently\r\nEnd at 17:00 pm\r\nSecond Day\r\nStart at 09:00 am\r\nIntroduction to the advantages and disadvantages of workflows and containers\r\nLaunch of the data cleansing stage\r\nLaunch of the rest of the workflow and analysis of the multiQC report\r\nEnd at 17:00 pm\r\nThird Day – BYOD\r\nStart at 09:00 am\r\nDefine the analysis strategy and launch the start of the analysis of your own data.\r\nEnd at 17:00 pm maximum",
            "homepage": "https://bioinfo.genotoul.fr/index.php/events/analysis-of-shotgun-metagenomic-data/",
            "is_draft": false,
            "costs": [
                "Non-academic for non-academic: 1650€ + 20% taxes (TVA)",
                "Academic non-INRAE for academic but non-INRAE: 510 € + 20% taxes (TVA)",
                "INRAE for INRAE's staff: 450 € no VAT charged"
            ],
            "topics": [
                "http://edamontology.org/topic_3174"
            ],
            "keywords": [
                "NGS Data Analysis",
                "Metagenomics"
            ],
            "prerequisites": [
                "Linux/Unix",
                "Cluster"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 12,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/300/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                },
                {
                    "id": 37,
                    "name": "MIAT - Mathématiques et Informatique Appliquées de Toulouse",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/MIAT%20-%20Math%C3%A9matiques%20et%20Informatique%20Appliqu%C3%A9es%20de%20Toulouse/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 22,
                    "name": "Genotoul-bioinfo",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/Genotoul-bioinfo/?format=api"
                }
            ],
            "logo_url": "https://bioinfo.genotoul.fr/wp-content/uploads/bioinfo_logo-rvb-petit.png",
            "updated_at": "2025-12-09T09:19:28.199012Z",
            "audienceTypes": [
                "Professional (continued)"
            ],
            "audienceRoles": [
                "Life scientists",
                "Biologists",
                "Bioinformaticians"
            ],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [
                {
                    "id": 151,
                    "name": "Metagenomic training",
                    "url": "https://catalogue.france-bioinformatique.fr/api/trainingmaterial/Metagenomic%20training/?format=api"
                }
            ],
            "learningOutcomes": "",
            "hoursPresentations": 3,
            "hoursHandsOn": 15,
            "hoursTotal": 18,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/670/?format=api"
            ]
        },
        {
            "id": 356,
            "name": "Advanced Python",
            "shortName": "Advanced Python",
            "description": "Objectifs pédagogiques\r\n\r\nA l’issue de la formation, les stagiaires seront capables de :\r\n\r\nconnaître les éléments avancés du langage de programmation Python,\r\nles appliquer sur des cas concrets en bioinformatique,\r\nêtre autonome dans la mise en place de tâches complexes visant à extraire et re-formater des données issues de fichiers textes,\r\ndans le cadre de traitement de données via le langage de programmation Python\r\n\r\nProgramme\r\n\r\nFonctions\r\nExpressions régulières\r\nGestion des erreurs\r\nBiopython\r\nQuelques modules de bioinformatique\r\nRéalisation de programmes et de Notebooks Jupyter\r\nIllustration avec des exercices de manipulation de fichiers de séquences",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [
                "Python Language"
            ],
            "prerequisites": [
                "Python - basic knowledge"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T13:17:08.789820Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Advanced",
            "trainingMaterials": [],
            "learningOutcomes": "A l’issue de la formation, les stagiaires seront capables de :\r\n\r\nconnaître les éléments avancés du langage de programmation Python,\r\nles appliquer sur des cas concrets en bioinformatique,\r\nêtre autonome dans la mise en place de tâches complexes visant à extraire et re-formater des données issues de fichiers textes,\r\ndans le cadre de traitement de données via le langage de programmation Python",
            "hoursPresentations": 2,
            "hoursHandsOn": 10,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/575/?format=api"
            ]
        },
        {
            "id": 353,
            "name": "Analyse de données métagénomiques shotgun / shotgun metagenomics",
            "shortName": "Shotgun metagenomics",
            "description": "Objectifs pédagogiques\r\n\r\nCette formation est dédiée à l’analyse de données métagénomiques procaryotes de type « shotgun » issues de la technologie de séquençage Illumina. Nous présenterons les étapes bioinformatiques nécessaires pour nettoyer les données brutes et les caractériser d’un point de vue taxonomique. Nous aborderons ensuite les différentes stratégies à employer pour assembler les reads et obtenir des comptages sur des gènes prédits. Enfin nous présenterons quelques outils pour obtenir une annotation fonctionnelle des échantillons. A l’issue des 2 jours de formation, les stagiaires connaîtront le périmètre, les avantages et limites des analyses de données de séquençage shotgun. Ils seront capables d’utiliser les outils présentés sur les jeux de données de la formation. L’ensemble des TP se déroulera sur l’infrastructure de Migale et nécessite une pratique courante de la ligne de commande.\r\n\r\nProgramme\r\n\r\nIntroduction générale sur les données métagénomiques\r\nAssignation taxonomique\r\nNettoyage des données brutes\r\nAssemblage / Binning\r\nPrédiction de gènes procaryotes\r\nAnnotation fonctionnelle\r\nConclusion, limites des méthodes",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_3697"
            ],
            "keywords": [
                "Metagenomics"
            ],
            "prerequisites": [
                "Linux/Unix",
                "Cluster"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T13:16:49.313752Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [],
            "learningOutcomes": "Cette formation est dédiée à l’analyse de données métagénomiques procaryotes de type « shotgun » issues de la technologie de séquençage Illumina. Nous présenterons les étapes bioinformatiques nécessaires pour nettoyer les données brutes et les caractériser d’un point de vue taxonomique. Nous aborderons ensuite les différentes stratégies à employer pour assembler les reads et obtenir des comptages sur des gènes prédits. Enfin nous présenterons quelques outils pour obtenir une annotation fonctionnelle des échantillons. A l’issue des 2 jours de formation, les stagiaires connaîtront le périmètre, les avantages et limites des analyses de données de séquençage shotgun. Ils seront capables d’utiliser les outils présentés sur les jeux de données de la formation. L’ensemble des TP se déroulera sur l’infrastructure de Migale et nécessite une pratique courante de la ligne de commande.",
            "hoursPresentations": 5,
            "hoursHandsOn": 7,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/572/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/694/?format=api"
            ]
        },
        {
            "id": 355,
            "name": "Initiation à Python / Introduction to Python",
            "shortName": "Introduction to Python",
            "description": "Objectifs pédagogiques\r\n\r\nA l’issue de la formation, les stagiaires seront capables de :\r\n\r\nmaitriser les éléments de base du langage de programmation Python,\r\nles appliquer sur des cas concrets en bioinformatique,\r\nêtre autonome dans la mise en place de tâches simples d’extraction d’informations, dans le cadre de traitement de données via le langage de programmation Python.\r\n\r\nProgramme\r\n\r\nPrésentation de Python\r\nVariables Python\r\nStructures de contrôle\r\nGestion de fichiers\r\nRéalisation de programmes simples et de Notebooks Jupyter\r\nMise en pratique avec des exercices de manipulation de fichiers de séquences",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [
                "Python Language"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T13:16:05.304441Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "A l’issue de la formation, les stagiaires seront capables de :\r\n\r\nmaitriser les éléments de base du langage de programmation Python,\r\nles appliquer sur des cas concrets en bioinformatique,\r\nêtre autonome dans la mise en place de tâches simples d’extraction d’informations, dans le cadre de traitement de données via le langage de programmation Python.",
            "hoursPresentations": 2,
            "hoursHandsOn": 10,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/701/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/574/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/691/?format=api"
            ]
        },
        {
            "id": 357,
            "name": "Manipulation de données avec R, introduction à tidyverse",
            "shortName": "Introduction à tidyverse",
            "description": "Objectifs pédagogiques\r\nA l’issue de la formation, les stagiaires seront capables de :\r\n* utiliser les principales fonctions des packages dplyr et tidyr de l’écosystème du « tidyverse »\r\n* lire les données et les ranger dans un format « tidy »\r\n* manipuler les données : filtrer, sélectionner, trier, produire des résultats par groupe, fusionner plusieurs tables\r\n* mettre en forme et pivoter les tables de données\r\n\r\nProgramme\r\n* Principes du tidyverse\r\n* Principales fonctions de manipulation de données du package dplyr : ajouter de nouvelles variables, sélectionner des colonnes, filtrer des lignes, trier, grouper, fusionner des tables\r\n* Enchaînements des opérations à l’aide de « pipe »\r\n* Mise en forme, jointure et pivot de données avec le package tidyr\r\n* Mise en application sur un exemple d’analyse de données de transcriptomique.",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [
                "R Language",
                "Tidyverse"
            ],
            "prerequisites": [
                "Basic knowledge of R"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T13:15:41.633863Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [],
            "learningOutcomes": "A l’issue de la formation, les stagiaires seront capables de :\r\n\r\nutiliser les principales fonctions des packages dplyr et tidyr de l’écosystème du « tidyverse »\r\nlire les données et les ranger dans un format « tidy »\r\nmanipuler les données : filtrer, sélectionner, trier, produire des résultats par groupe, fusionner plusieurs tables\r\nmettre en forme et pivoter les tables de données",
            "hoursPresentations": 2,
            "hoursHandsOn": 10,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/700/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/579/?format=api"
            ]
        },
        {
            "id": 354,
            "name": "Introduction aux bonnes pratiques pour des analyses reproductibles",
            "shortName": "Good practices for better reproducibility of analyses",
            "description": "Objectifs pédagogiques\r\n\r\nL’objectif de cette formation est d’initier les apprenants aux bonnes pratiques pour la reproductibilité des analyses. Ils apprendront à rédiger des rapports d’analyse en R Markdown et à les déposer sur un dépôt GitHub. Les principes FAIR (faciles à trouver, accessibles, interopérables et réutilisables) et les bases de la rédaction de PGD (plans de gestion de données) seront également présentés. Durant la formation, nous utiliserons RStudio et GitHub.\r\n\r\nProgramme\r\n\r\nPrincipes et enjeux de la recherche reproductible\r\nUtilisation de GitHub\r\nGestion des versions d’un document\r\nRédaction de document computationnel\r\nPartage d’un rapport avec ses collaborateurs\r\nPrincipes FAIR et PGD",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [
                "Reproducibility"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T13:15:23.269149Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "L’objectif de cette formation est d’initier les apprenants aux bonnes pratiques pour la reproductibilité des analyses. Ils apprendront à rédiger des rapports d’analyse en R Markdown et à les déposer sur un dépôt GitHub. Les principes FAIR (faciles à trouver, accessibles, interopérables et réutilisables) et les bases de la rédaction de PGD (plans de gestion de données) seront également présentés. Durant la formation, nous utiliserons RStudio et GitHub.",
            "hoursPresentations": 2,
            "hoursHandsOn": 4,
            "hoursTotal": 6,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/573/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/693/?format=api"
            ]
        },
        {
            "id": 352,
            "name": "Développement d’une application avec R Shiny /",
            "shortName": "R Shiny",
            "description": "Objectifs pédagogiques\r\n\r\nÀ l’issue de la formation, les stagiaires connaîtront les principes de bases et le fonctionnement du package “Shiny”. Ils et elles seront capables de créer leurs premières applications web interactives à partir de scripts R. Les solutions de déploiement d’applications Shiny seront également abordées.\r\n\r\nProgramme\r\n\r\nPrincipes généraux et fonctionnement d’une application Shiny\r\nDéveloppement d’applications Shiny\r\nDéploiement d’applications Shiny",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [
                "Shiny"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T13:14:32.711762Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [],
            "learningOutcomes": "À l’issue de la formation, les stagiaires connaîtront les principes de bases et le fonctionnement du package “Shiny”. Ils et elles seront capables de créer leurs premières applications web interactives à partir de scripts R. Les solutions de déploiement d’applications Shiny seront également abordées.",
            "hoursPresentations": 2,
            "hoursHandsOn": 4,
            "hoursTotal": 6,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/571/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/686/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/682/?format=api"
            ]
        },
        {
            "id": 351,
            "name": "Introduction au language R / Introduction to R langage",
            "shortName": "Introduction to R langage",
            "description": "Objectifs pédagogiques :\r\nÀ l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du langage R et ses principes. Ils seront capables de les appliquer pour effectuer des calculs ou des représentations graphiques simples. Ils seront de plus autonomes pour manipuler leurs tableaux de données.\r\nAttention : ce module n’est ni un module de statistique, ni un module d’analyse statistique des données.\r\n\r\nProgramme :\r\n* Structures et manipulation de données\r\n* Principaux éléments du langage de programmation (boucle, fonctions…)\r\n* Différentes représentations graphiques de données/résultats (plot, histogramme, boxplot)",
            "homepage": "https://documents.migale.inrae.fr/trainings.html",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0605"
            ],
            "keywords": [
                "R Language"
            ],
            "prerequisites": [],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T12:51:01.486572Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Novice",
            "trainingMaterials": [],
            "learningOutcomes": "",
            "hoursPresentations": 2,
            "hoursHandsOn": 10,
            "hoursTotal": 12,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/570/?format=api"
            ]
        },
        {
            "id": 345,
            "name": "Graphiques sous R avec ggplot2 / Graphics with R-ggplot2",
            "shortName": "ggplot2",
            "description": "Objectifs pédagogiques :\r\nÀ l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du package R « ggplot2 » et la démarche sous-jacente pour construire un graphique à partir d’un tableau de données. Ils seront capables de réaliser plusieurs types de représentations graphiques, telles que des nuages de points, des courbes, des histogrammes, des diagrammes en bâtons, des boxplots, des heatmaps, etc.  Les stagiaires pourront apporter leur propre tableau de données et pratiquer dessus en fin de formation. \r\n\r\nProgramme :\r\n- Principes généraux liés au package ggplot2 \r\n- Principales fonctions graphiques pour réaliser des nuages de points, des histogrammes, des boxplots, etc. \r\n- Principales fonctions pour jouer sur les coloriages en fonction d’une variable, sur les échelles de couleurs, sur les graduations, sur les représentations multiples, etc.",
            "homepage": "https://migale.inrae.fr/trainings",
            "is_draft": false,
            "costs": [
                "Priced"
            ],
            "topics": [
                "http://edamontology.org/topic_0091",
                "http://edamontology.org/topic_0605",
                "http://edamontology.org/topic_2269"
            ],
            "keywords": [
                "Représentations graphiques"
            ],
            "prerequisites": [
                "Langage R de base"
            ],
            "openTo": "Everyone",
            "accessConditions": "",
            "maxParticipants": 10,
            "contacts": [
                "https://catalogue.france-bioinformatique.fr/api/userprofile/769/?format=api"
            ],
            "elixirPlatforms": [],
            "communities": [],
            "sponsoredBy": [],
            "organisedByOrganisations": [
                {
                    "id": 88,
                    "name": "BioinfOmics",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/BioinfOmics/?format=api"
                },
                {
                    "id": 82,
                    "name": "INRAE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/organisation/INRAE/?format=api"
                }
            ],
            "organisedByTeams": [
                {
                    "id": 10,
                    "name": "MIGALE",
                    "url": "https://catalogue.france-bioinformatique.fr/api/team/MIGALE/?format=api"
                }
            ],
            "logo_url": "https://migale.inrae.fr/sites/default/files/migale-orange_0.png",
            "updated_at": "2024-01-18T12:50:47.605879Z",
            "audienceTypes": [],
            "audienceRoles": [],
            "difficultyLevel": "Intermediate",
            "trainingMaterials": [],
            "learningOutcomes": "À l’issue de la formation, les stagiaires connaîtront les principales fonctionnalités du package R « ggplot2 » et la démarche sous-jacente pour construire un graphique à partir d’un tableau de données. Ils seront capables de réaliser plusieurs types de représentations graphiques, telles que des nuages de points, des courbes, des histogrammes, des diagrammes en bâtons, des boxplots, des heatmaps, etc.",
            "hoursPresentations": 1,
            "hoursHandsOn": 5,
            "hoursTotal": 6,
            "personalised": null,
            "event_set": [
                "https://catalogue.france-bioinformatique.fr/api/event/554/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/569/?format=api",
                "https://catalogue.france-bioinformatique.fr/api/event/683/?format=api"
            ]
        }
    ]
}